# Appendix B: Service Connection Underground Construction Standards

The following section of the underground service connection requirements will apply to all CLP underground electrical distribution systems. All construction will be required to meet CLP and Industry Standards.

PLEASE NOTE: AS THIS MANUAL IS CURRENTLY A WORKING DOCUMENT AND STILL IN DEVELOPMENT, THIS SECTION WILL BE EXPANDED TO INCLUDE RELEVANT SECTIONS FROM UNIFIED FACILITIES GUIDE SPECIFICATIONS (<u>https://www.wbdg.org/ffc/dod/unified-facilities-guide-specifications-ufgs</u>) AS WELL AS LOCAL UTILITIES (TACOMA POWER AND PUGET SOUND ENERGY) AS SUCH STANDARDS CAN BE ADAPTED, MODIFIED AND INCORPORATED.





- 1. Mount cutouts for easy operation from pole or man-lift equipment.
- 2. Train cable so open cutout door does not contact termination.
- 3. Carry the line and ground connections to the surge arrester terminals first as shown in the figure above.
- 4. Leave enough "slack" on surge arrester high side and ground side connections to facilitate easy removal and/or installation with hot stick.
- 5. Move the cable termination away from the expulsion path of the fuse tube.
- 6. Install cable grip on short or downhill cable runs.
- 7. For fuse sizes above 100T, contact the CLP Project Manager or Engineer.



| BILL OF MATERIALS |                                          |                  |     |  |
|-------------------|------------------------------------------|------------------|-----|--|
| ITEM              | MATERIAL                                 | MANUFACTURER ID  | QTY |  |
| 1                 | CUTOUT, DROPOUT, 100A, 15kV              | TBD              | 3   |  |
| 2                 | VISE TOP PIN INSULATOR                   | TBD              | 3   |  |
| 3                 | ARRESTER, SURGE 10kV                     | TBD              | 3   |  |
| 4                 | 10' FIBERGLASS TANGENT CROSSARM ASSEMBLY | PUPI             | 1   |  |
| 5                 | 8' FIBERGLASS TANGENT CROSSARM ASSEMBLY  | PUPI             | 3   |  |
| 6                 | CLAMP, HOT LINE                          | TBD              | 3   |  |
| 6                 | CLAMP, STIRRUP                           | TBD              | 3   |  |
| 7                 | HEAT SHRINK BREAKOUT BOOT                | 3M #HDBB-345-250 | 6   |  |
| 8                 | WIRE #4 STR SD CU BARE                   | TBD              | A/R |  |
| 9                 | 6" STAND-OFF CONDUIT SUPPORT BRACKET     | TBD              | A/R |  |
| 10                | 3M COLD SHRINK QT-II TERMINATION KIT     | TBD              | 3   |  |
| 11                | GRIP, CONDUIT RISER, 4" CONDUIT          | TBD              | 1   |  |
| 12                | POLE RISER, 4", PVC CONDUIT              | TBD              | 1   |  |



RISER POLE-TOP FRONT VIEW

RISER POLE-TOP SIDE VIEW

- 1. When common neutral is located on primary crossarm, an appropriate size conductor will be connected to the common neutral, and brought down pole to lightning arrester mounting arm.
- 2. Contact a #4 copper lead wire continuous through to the bottom on each lightning arrester to common neutral, and then to the pole ground.
- 3. Connect the "A" set of concentric neutral wires from stress cones to the #4 copper lead wire at the bottom of the lightning arresters, and continue to the common neutral connect the "B" set of concentric neutral wires in the same manner, and continue to the "A" set of concentric neutral wires. Connect the "C" set of concentric neutral wires in the same manner, and continue to the "B" set of concentric neutral wires.
- 4. Kellems grips shall be used whenever needed to support cable.
- 5. End bushing shall be used on upper end of conduit.
- 6. Conduit shall be gray PVC Schedule 40. Underground sweep (elbow) and first 10-ft (stick) of vertical conduit measured from the top of the sweep shall be RGS. Wrap entire RGS conduit with corrosion tape.
- 7. 12-ft of cable shall extend out of the riser conduit to ensure enough cable for termination.
- 8. Install conduit riser on the same side of the pole as the lightning arrester.
- 9. Install insulators as needed to support conductor between cutouts and phase wires.
- 10. Install cable grip on short and downhill cable runs.
- 11. For fuse sizes above 100T, contact the CLP Project Manager or Engineer.







- 1. All conduits shall be installed per City Light and Power service connection manual. Refer to the primary conduit and primary/secondary conduit depths sections for trenching, compaction, and pad requirements.
- 2. For a radial feed installation of a loop-type transformer, both primary conduits shall be installed. If one is not used, it shall be stubbed and capped at least 2 out from the front edge of the pad with an 8-in UG marker installed above the end.
- 3. Placement of multiple secondary conduits shall be by rows from back to front, example: row 1 first, then row 2, etc. Fill back row first prior to starting the next row forward, filling front row last or used for future use.
- 4. Do not pour concrete in the conduit window opening unless an older style transformer is used. Pea gravel may routinely be used as filler if needed.
- 5. For 45-150kVA transformers, frame 9 secondary conduits maximum (3 rows of 3 conduits). Each row to fit within 15-in maximum width from right side of window opening, and within 16-in maximum depth from back side of window opening. The distance from the secondary compartment to the center of the primary conduit shall be 22-in maximum, 10-in minimum. This framing arrangement works with both current and older style transformer secondary compartment dimensions.
- 6. For 300-2500kVA older style transformers, frame 16 secondary conduits maximum (4 rows of 4 conduits). Each row to fit within 22" maximum width from right side of window opening, and within 22-in maximum depth from back side window opening. This framing arrangement works with current style transformer secondary compartment dimensions.
- 7. Minimum radius of 4-in primary conduit vertical bend shall be 36-in. Utility inspector may require 48-in radius GRC bend if necessary for longer pulling length.
- 8. CLP engineer to specify for pads poured—in—place when access to precast pad is not available.
- 9. Conductive-material ducts and riser guards that enclose electric supply lines, or are exposed to contact with open supply conductors shall be effectively grounded.
- 10. When terminating three phase loop feed transformers, cables using conduit on the left side shall be terminated by the HxA bushings. Cables using conduit on the right side shall be terminated to HxB bushings to prevent crossing of primary cables.
- 11.Leave slack in secondary and primary cables to permit transformer removal and replacement for maintenance, train primary cables to permit parking elbows.
- 12. Leave sufficient slack on concentric neutrals to allow removing elbows without disconnecting neutrals.
- 13. Ground loop in all cases shall be installed in front of primary cables.
- 14. CAUTION: Ground strap on neutral bushings shall remain connected to tank in all cases (except XO bushing in special cases, such as 2400V motor loads), tank will be energized to primary voltage if primary neutral tank grounds are disconnected and one open primary phase exists on the source side of the transformer without HO bushings.
- 15. Bond all above ground metallic supply and communication enclosures that are separated by 6-ft or less. Use minimum #6 bare copper wire direct buried a minimum 18-in below grade, to a suitable bolted or screw connection that can be temporarily opened when locating cables. Treat open ground connections as energized!



5/31/2019



DESCRIPTION: Vault with cover, concrete, 9ft-1in x 7ft-1in x 8ft-2in, 36in manhole access APPLICATION: Feeder splice/pull-box for multiple circuits for traffic locations.

NOTES:

- 1. CONCRETE 28 DAY COMPRESSIVE STRENGTH 4,500 PSI
- 2. REBAR ASTM A-615 GRADE 60, MESH ASTM A-185 GRADE 65
- 3. ASTM C-857 MINIMUM STRUCTURAL DESIGN LOADING FOR UNDERGROUND PRECAST CONCRETE STRUCTURES.
- 4. H-20 LOAD RATING FOR INCIDENTAL TRAFFIC.

**TYPICAL 15KV VAULT** 





5/31/2019

#### PLACEMENT FOR PADMOUNTED OIL-FILLED EQUIPMENT



- 1. Clearance requirements for oil filled transformers or other oil filled equipment:
  - \* A. 12-ft clear area in front (door opening).
  - \* B. 3-ft clear area on both sides.
  - \* C. Equipment is to be clear of all overhead obstructions.
  - 2. Transformer Rating: Recommended Minimum Distance From
- Buildings for Mineral-Oil Filled Transformers

(If distances do not meet below requirements, specify FR3 fluid.) 75 kVA or Less: 10-ft

76-333 kVA: 20-ft

More Than 333 KVA: 30-FT

#### COMBUSTIBLE WALLS

The basic minimum clearance from a combustible wall to padmounted oil filled equipment is 10 feet. If it is impossible to meet this clearance, the construction of a fire resistant barrier either physically attached to the wall or free-standing and separating the equipment from the wall is permissible.



 $\sim$ 

#### BALCONIES, FIRE ESCAPES OR OTHER OVERHANGS

For a balcony, fire escape, or overhang, the minimum clearance shall be 10 feet from the farthest projection of the overhang to the ground. No padmounted device shall be located under any overhang that will prevent the use of equipment normally used for installation or changeouts.



- For optimal performance (cooling, reliability, economics, safety) CLP prefers to install
  padmount transformers in the open with minimal obstructions to airflow and away from
  occupied buildings as detailed on the previous pages. However, to accommodate a customer's
  desire for aesthetic screening, CLP allows enclosures to be built around padmount installations
  when the following guidelines are met:
  - 1.1. Fences/enclosures along 2 or more sides of a padmount transformer, a minimum clear space measuring 3-ft horizontally from the edge of the pad will be required to the side of the enclosure walls on the sides and back of the transformer. There is a 12-ft requirement for the front of the transformer for CLP worker safety.
  - 1.2. When constructed of conductive materials, walls/gates shall be bonded to the transformer LV neutral/ground with a minimum #6 bare copper buried at least 6-in below grade.
  - 1.3. For adequate air circulation and cooling of the transformer, the top of the enclosure shall remain open.
  - 1.4. Customers shall maintain/clear the area immediately adjacent to any transformer radiator cooling fins.
  - 1.5. Trash dumpsters/bins shall not share the same enclosures with padmount transformers, i.e. they will have a wall between and separate gate/access opening.
  - 1.6. Maximum distance from pad and opening to paved access drive area shall be 12-ft for small KVA sizes and proportionally closer for larger transformers. This shall provide clear access for boom truck for transformer removal and replacement through the opening.
  - 1.7. The following distances from buildings shall be met unless less flammable FR3 insulating liquid is specified.
    - 1.7.1. 75 KVA or less: 10-ft
    - 1.7.2. 76-333 KVA: 20-ft
    - 1.7.3. More than 333 KVA: 30-ft





- 1. All loop-feed type transformer shall have a second 90-deg bend installed even when initially radially fed. Stub and cap second duct a minimum of 2-ft beyond edge of pad and place 8-in UG marker above end for future location.
- 2. Level pad with collar when needed.
- 3. Install primary and secondary ducts as shown in the Figures on the next page. Install ground rod near center of pad opening.
- 4. Maximum secondary conductor size shall be 350MCM CU. 500MCM sized conductors shall be used with approved equipment adapter and shall be suitably insulated at 600V with shrink tubing. All burrs must be filed smooth on crimped connectors.
- 5. Secondary cable progression into the 6 or 8-position terminals shall be from tank to front with the largest size cables first (routed sequentially from the right side ducts as numbered in the Figure above to the corresponding terminal position number or from the back as numbered on the Figures on the next page to the corresponding terminal position number or from the back).
- 6. Leave slack in secondary and primary cables to permit removal and replacement for maintenance.
- 7. When terminating single phase transformers, the cable using conduit on the left side shall be terminated to the H1A bushing. Cable using conduit on the right side shall be terminated to H1B bushing to prevent crossing of primary cables.
- 8. CAUTION: Ground strap on neutral bushing shall remain connected to tank in all cases. Tank will be energized to primary voltage if primary neutral tank ground is disconnected.
- 9. Leave sufficient slack on concentric neutrals to allow removal of elbows without disconnecting neutrals.
- 10. Bond all above ground metallic supply and communication enclosures that are separated by 6-ft or less. Use minimum #6 bare copper wire direct buried a minimum 18-in below grade, to a suitable bolted or screw connection that can be temporarily opened when locating cables. Treat open ground connections as energized!





- 1. Transformer pad shall be installed on level and compacted earth if terrain slope is 5% or less in any direction.
- 2. If terrain slope is greater than 5%, a 4x4x12-ft vault extension shall be installed level in all directions from point of grade.
- 3. Vault extension shall be filled with earth and compacted to provide a solid base for the transformer pad.
- 4. 'For installation uniformity, 5% grade is interpreted to be 5/8-in vertical rise or fall per each 12-in of horizontal run.



# Application

This standard lists the fuse links used in the Bay-O-Net fuseholders in  $1\Phi$  padmount transformers.

| Primary<br>Voltage<br>(V) | Transformer<br>kVA | Eaton/Cooper<br>Fuse # | Fuse<br>Rating<br>(Amp) | Fuse Type    | MID   |
|---------------------------|--------------------|------------------------|-------------------------|--------------|-------|
|                           | 25                 | 4000358C05             | 8                       | Dual Sensing | 19813 |
|                           | 37.5               | 4000358C08             | 15                      | Dual Sensing | 19814 |
|                           | 50                 | 4000358C08             | 15                      | Dual Sensing | 19814 |
| 7200                      | 75                 | 4000358C10             | 25                      | Dual Sensing | 19815 |
|                           | 100                | 4000358C10             | 4000358C10 25           |              | 19815 |
|                           | 167                | 4000358C12             | 50                      | Dual Sensing | 19816 |
|                           | 25                 | 4000358C03             | 3                       | Dual Sensing | 34712 |
| 13800                     | 50                 | 4000358C05             | 8                       | Dual Sensing | 19813 |
|                           | 100                | 4000358C08             | 15                      | Dual Sensing | 19814 |
|                           | 25                 | 4000358C10             | 25                      | Dual Sensing | 19815 |
|                           | 37.5               | 4000358C12             | 50                      | Dual Sensing | 19816 |
| 2400                      | 50                 | 4000358C12             | 50                      | Dual Sensing | 19816 |
|                           | 75                 | 4000358C14             | 65                      | Dual Sensing | 19817 |
|                           | 100                | 4000358C14             | 65                      | Dual Sensing | 19817 |
|                           | 167                | 4000358C18             | 140                     | Dual Sensing | 19818 |

**Table 1**1Φ Padmount Transformer Fuse Link

# **Construction Notes**

• See Cooper catalog S240-40-3 "Bay-O-Net Fuse Re-fusing Installation Instructions" for information on refusing transformer.

# References

- Cooper catalog CA132010EN "Dual sensing Bay-O-Net fuse link"
- Cooper catalog S240-40-3 "Bay-O-Net Fuse Re-fusing Installation Instructions"



# Application

This standard lists the fuse links used in the Bay-O-Net fuseholders in  $3\Phi$  padmount transformers.

| Transformer<br>kVA | Eaton/Cooper Fuse<br># | Fuse Rating<br>(Amp) | Fuse Type    | MID   |
|--------------------|------------------------|----------------------|--------------|-------|
| 30                 | 4000358C03             | 3                    | Dual Sensing | 34712 |
| 45                 | 4000358C03             | 3                    | Dual Sensing | 34712 |
| 75                 | 4000358C05             | 8                    | Dual Sensing | 19813 |
| 112.5              | 4000358C08             | 15                   | Dual Sensing | 19814 |
| 150                | 4000358C08             | 15                   | Dual Sensing | 19814 |
| 225                | 4000358C10             | 25                   | Dual Sensing | 19815 |
| 300                | 4000358C10             | 25                   | Dual Sensing | 19815 |
| 500                | 4000358C12             | 50                   | Dual Sensing | 19816 |
| 750                | 4000358C14             | 65                   | Dual Sensing | 19817 |
| 1000               | 4000358C14             | 65                   | Dual Sensing | 19817 |
| 1500               | 4038361C04CB           | 100                  | High Amp OL  | 43324 |
| 2000               | 4038361C05CB           | 125                  | High Amp OL  | 43325 |
| 2500               | 4038361C05CB           | 125                  | High Amp OL  | 43325 |

| Table 1 | 3Φ Padmount Transformer Fuse Link 12.47 kV and 13.8 kV |
|---------|--------------------------------------------------------|
|         |                                                        |

# **Construction Notes**

• See Cooper catalog S240-40-3 "Bay-O-Net Fuse Re-fusing Installation Instructions" for information on refusing transformer.

# References

- Cooper catalog CA132010EN "Dual sensing Bay-O-Net fuse link"
- Cooper catalog CA132007EN "High ampere overload Bay-O-Net fuse link"
- Cooper catalog S240-40-3 "Bay-O-Net Fuse Re-fusing Installation Instructions"







- 1. Trench width to be a minimum 3—in on each side of conduit or conductor, to provide for proper compaction.
- Duct shall have a 3-in minimum concrete envelope when CLP minimum cover depths are not achieved. Ducts shall also be installed with plastic base spacers to maintain a consistent 3-in of concrete below duct.
- 3. All underground for clearances required by NESC from UG electric conduit/cable to other UG facilities (communication, water, sewer, foundations, sub-structures, etc).
- 4. City Light and Power requires an E-LOK type transition coupling at plugged end of bore, to be relocated to nearest 42-in depth of stub (typically within 6-10-ft) and used for attachment of contractor supplied pipe, Contractor has the option of picking up bore pipe at 42-in depth or digging parallel and lower end of stub if direction of contractors's ditch allows.
- 5. If required depth of trench or bore-in conduit cannot be met, a new proposed depth must be approved in advance of CLP representative. CLP representative must be notified a minimum of three days in advance of bore start time. Potholling may be required at any time, at the discretion of the CLP representative, to prove any bore depth. Conduit will be required for any installation that exceeds CLP minimum or maximum depth as shown above.
- 6. CLP contractor to submit bore log to CLP representative within 7 days of completion of bore installation.



## TRENCH BACKFILL AND COMPACTION GUIDE:

- 1. Before any backfilling operations are started, make an inspection of all trenches.
- 2. If soil materials in the bottom of a trench might cause unequal settlement, the unsatisfactory materials shall be removed and backfilled with selected materials.
- 3. Check for cable placement, conduit integrity, concrete encasement of conduit when required, adequate bedding/cover over direct buried cables, proper minimum depth, pole and pad risers, cable entrance to and from vaults and pads, secondary pull boxes and service stubs marked with electronic markers to determine that the work has been done in accordance with construction standards and job print specifications.
- 4. NESC Rule 352A requires the following:
  - a. The bottom of the trench receiving direct-buried cable should be relatively smooth, undisturbed earth; well tamped earth; or sand. When excavation is in rock or rocky soils, the cable should be laid on a protective layer of well-tamped backfill. backfill within 100mm (4 inches) of the cable should be free of materials that may damage the cable. Backfill should be adequately compacted. Machine compaction should not be used within 150mm (6 inches) of the cable.
  - b. For cable installed in a duct, the bottom of the trench should be in undisturbed, tamped, or relatively smooth earth. Where the excavation is in rock, the duct should be laid on a protective layer of clean tamped backfill. All backfill should be free of materials that may damage the duct.
- 5. The first twelve inches of backfill shall be free from stones, rock, or other material that might damage the cable or conduit. Selected backfill shall contain no soil material larger than 1/2" in diameter.
- 6. Final backfill shall be done in equal increments the length and girth of the trench line.
- 7. When suitable, as determined by soils test, use native material compacted in accordance with the following:
  - a. For cohesive soils, compact to 95% maximum Standard Proctor dry density (ASTM D698) at ±2% of optimum moisture content.
    - b. For cohesiveness soils, compact to 95% maximum Modified Proctor dry density (ASTM D1557) at ±2% of optimum moisture content (or 100% maximum Standard Proctor dry density (ASTM D698) at ±2% of optimum moisture content). Prior to and during compaction, materials shall have a moisture content as required to obtain the specified density. Thickness of horizontal layers after compacting shall not be more than 9 inches.
    - c. Thickness of horizontal layers after compacting shall not be more than 6 inches. For highly expansive soils (swell potential is greater than 2.00% under 200 psf surcharge pressure), contact City Light and Power. If native soils are not suitable for trench backfill and compaction (heavy clay or expansive soil, rock-filled, etc.), use flowable fill, T&D d. Underground mix #3, installed as specified on SC5.5.5 or Class 5 or 6 base course or similar graded material compacted to the test values specified above (see gradation specifications on SC5.5.5). NOTE: CLP Inspectors routinely obtain compaction results from test labs using the Modified Proctor method and as a practical approach based on historical values or maximum density for native soils in the vicinity (not site specific) when native backfill is employed. When deemed necessary by the test lab and Utility Inspector, the site specific maximum density may need to be verified by test. Any independent contractor tests should be done using the same (Modified Proctor) test method for compaction of results or else the limits for the Standard Proctor method shall be referenced. Backfill & compaction of all trenches shall meet the requirements of the City Light and Power SC5.5 and all other applicable Local, State, and Federal requirements.
- 8. The density tests shall be performed at various depths in the trench to ensure that the required compaction is obtained throughout. For trenches less than 30" in depth, compaction tests shall be taken at the surface and within 18" above the top of conduit or cable. For trenches greater than 30" in depth, density tests shall be taken within 18" of the top of the conduit or cable and at 24" vertical intervals to the top of the trench with the final test at the surface.
- The frequency of density tests shall be a minimum of 250 linear feet of mainline trench and at each service installed. The number of density tests may be increased if directed by the Utility Inspector. If flowable fill is installed as specified on page 4, compaction and density tests are not required.
- 10. All trench lines shall be restored to the original grade. Any excess soil shall be piled on top of the trench and shall be well compacted. The top surface of the trench backfill shall be relatively smooth. The premises should be left in clean condition and all rock and debris shall be removed from the site. Pavement or walk cuts shall be repaved with material identical to the original surfaces in accordance with Local Codes and Standards.



# FOUNDATION COMPACTION SPECIFICATION FOR PADMOUNTED EQUIPMENT

- 1. City Light and Power recommends experienced personnel who understand the importance of moisture for compacting soils and the characteristics of expansive soils.
- 2. Before any backfilling or compaction operations are started, inspect all conduit spacings and riser heights. Make sure they meet the construction standard specified for the equipment to be installed.
- 3. All pads pre-cast or poured on site shall project a minimum of 4" above grade.
- 4. Excavate a minimum of twelve inches beyond perimeter of pad and a minimum of 36" deep.
- 5. The first twelve inches of backfill shall be free from stones, rock, or other material that might damage the cable or conduit. Selected backfill shall contain no soil material larger than 1/2" in diameter.
- 6. When suitable, as determined by soils test, use native material compacted in accordance with the following:
  - a. For cohesive soils, compact to 87% maximum Modified Proctor dry density at ± 2% of optimum moisture content (or 92% maximum Standard Proctor dry density at ±2% of optimum moisture content).
  - b. For cohesionless soils, compact to 85% maximum Modified Proctor dry density at -5% to +3% of optimum moisture content (or 90% maximum Standard Proctor dry density at -5% to +3% of optimum moisture content). Prior to and during compaction, materials shall have a moisture content as required to obtain the specified density. Thickness of horizontal layers after compacting shall not be more than 9".
  - c. For expansive soils, remove and replace with DOT Class 5 or 6 soil and compact per 6b above
- 7. After successful completion of the above steps, call the City Light and Power representative who will arrange for compaction tests. This shall be done and approved before a concrete pad will be poured or a precast pad installed.





#### PAVEMENT REPLACEMENT AND BACKFILL DETAIL

#### STREET CROSSING NOTES:

- 1.
- a. For streets with existing concrete subsurface: Use Portland cement, 3000 psi compressive strength, 6" minimum thickness.
- b. For new or recently overlayed streets (less than 3 years old): Use Portland cement, 3000 psi compressive strength, 6" minimum thickness.
- c. For typical streets: Replace with new base course to match existing or 6" depth, whichever is greater.
- 2.
- a. For streets with existing concrete subsurface: Use select gravel compacted to 95% of maximum Standard Proctor, 12" minimum thickness.
- b. For new or recently overlayed streets (less than 3 years old): New base course compacted to 95% of maximum Standard Proctor, 6" minimum thickness.
- 3. When suitable, use native material compacted as specified on page 2. If native soils are not suitable, install flowable fill as specified on page 5.
- 4. Flowable fill is required for street crossing trenches one foot or less in width.
- 5. Utilize the boring crew/contractor when appropriate for recently re-paved streets, etc.



# FLOWABLE FILL INSTALLATION GUIDE:

Flowable fill for utility trench restoration is to be used only as an alternative when native soil is not suitable for backfill. It will set up and provide compaction for quick trench closure.

It shall be installed as follows:

- 1. As the cement truck begins pouring fill mix into the trench, the crew shall start vibrating the mix immediately.
- 2. To achieve proper hydration of the flowable fill mix, vibrators shall be used in all cases. The use of vibrators is extremely important as it removes excess water from the mix. If vibrators are not used, the flowable fill will not hydrate properly. For proper installation, the use of one vibrator minimum is required for each concrete truck pouring concrete into a trench.
- 3. All concrete encased ducts using "T&D Underground Mix #1" shall be allowed sufficient time to set up before the flowable fill mix is installed. This is to avoid any intermixing of the two different types of concrete. See chart for estimating flowable fill quantity when used to cover concrete encased duct banks.
- 4. The normal set-up time for the flowable fill mix to withstand traffic is approximately one hour after installation. Depending upon soil conditions, weather, and temperature, this time may vary. The mix will completely set up in 28 days at approximately 90-120 PSI, when properly hydrated. The set-up time required to resume normal traffic shall be determined by the City Light and Power/Representative on the job site.





- 1. Install spacers every 7'. Base spacer and/or intermediate spacers and conduits shall be tied together using line pull polyolefin. Survey stakes shall be used at every base spacer as a tie down to prevent ducts from floating.
- 2. Duct is to have a minimum of 3" concrete envelope above and below, and 3" on each side. Dimensions of trench width shall be maintained as shown to keep concrete envelope volume within specification. Any trenches exceeding this limit shall be formed on one side (at contractor's expense) to minimize cost of encasement and excess trench width shall be backfilled at contractor's expense, including all material, labor and equipment costs. Bottom of trench shall be uniform, compact and free of debris.
- 3. Concrete used for duct encasement shall be used Portland cement, 3000psi compressive strength. Concrete shall be properly vibrated when installed to assure complete flow under, around, and between all ducts and to eliminate any air pockets.
- 4. All underground electrical ductbank shall provide warning tape (3" wide by 5 mil. thick) above ductbanks along the entire route within the the backfill. The warning tape shall be located approximately 18 inches below the final grade.
- 5. After concrete has taken firm set, the first 12 inches of backfill shall be free from stones, rock, or other material that might damage the ductbanks, cables, or conduits. Selected backfill shall contain no soil material larger than 1/2 " in diameter. For final backfill and compaction using native soils, compact to 92% maximum Standard Proctor dry density at ±2% of optimum moisture content. Backfill of trenches in existing paved streets shall be native soil whenever economical (mechanically compacted to 95% of maximum Standard Protor with new base course to match existing or 6" depth, whichever is greater).
- NESC Rule 352D requires a minimum of 30" cover above primary cables (601 volts to 50kV); see NESC rules for shallower burial depth requirements.
- 7. Encasement should be used for 1) 600 amp mainlines, 15kV 2) multiple-duct banks (vertically stacked)
  3) installations that require flowable fill or 4) in cases where minimum cover is not met.



- 1. The intent of this specification is to establish the guidelines on materials acceptable for underground primary installations as governed by City Light and Power. The size of duct primary cable run (4-in or 5-in) shall be specified by City Light and Power on the design drawings.
- 2. All approved direct buried plastic ducts sued for installations for primary cable runs shall have a minimum cover of 36-in compacted backfill over the top of the ducts and a minimum of 3-in from side of the ducts to trench walls. Vertical measurements shall meet or exceed the requirements both at the time of installation and subsequent thereto. A minimum of 3-in of concrete encasement shall be used when adequate depth cannot be achieved. Authorization from a CLP inspector is required before any installation with less than minimum specified cover is installed.
- 3. All plastic utility duct for underground installations shall conform to either NEMA Standards for Electric Duct or ASTM specifications and be installed per NEMA/ASTM guidelines. The following typees of conduits are acceptable for Electric Raceways when installed as noted:
- 3.1. EPC-40-PVC or HDPE: Suitable for direct bury without concrete encasement. Requires CLP approval.
- 3.2. PVC Schedule 40: Suitable for underground applications encased in concrete. 3.3. All conduits, 90-deg bends and fittings shall be rated for 90-deg Celsius cable without exception.
- 4. Fittings, couplings, and bends shall be of the type designed for the duct being used.
  5. Refer to PVC duct manufacturer recommendations for solvent cement to be used on their product. Caution shall be taken to ensure fittings and duct are compatible. For installation below 32-deg Fahrenheit, proper PVC cement shall be specified.
- 6. City Light and Power policy for underground service risers to the meter socket specifies GRC without exception for all exposed lengths above grade. All ducts of conductive material, such as GRC, which enclose electric supply lines, shall be effectively grounded in accordance with NESC rules. Grounding bushings shall be installed on all exposed GRC conduits above grade.
- 7. All rigid steel sweeps and 90-deg bends shall commply to AANSI Standard C80.1.
- 8. All galvanized conduit, 90-deg bends, or long radius sweeps that are direct buried shall be coated with tar or taped with suitable material for corrosion protection. All horizontal 90-deg bends in primary conduit runs shall be 48-in long-radius GRC.
- 9. All primary riser conduits shall be isntalled with bushings or bell ends to avoid cable abrasion against sharp conduit edges. Conduit riser into padmount equipment shall project 2—in above grade or as shown in the specified in the design drawings.
- 10. After trench is backfilled and compacted, primary cable ducts shall be clean internally and proven to be free of obstructions by passing a mandrel of the following minimum outside diameter and length.

4" duct = 3.56" OD, 6" long mandrel 6" duct = 5.69" OD, 11-1/2" long mandrel



11. CT metering conduits, when required, shall be 1-1/4-in size from the transformer pad or CT cabinet to the meter socket, either GRC or schedule 40 PVC, with all exposed above ground lengths to be GRC terminated with grounding bushings bonded to local ground electrodes.



#### HIGH VOLTAGE CABLE HANDLING AND STORAGE GUIDE

- 1. Unloading of cable should be accomplished so that equipment used does not contact either the cable surfaces or the protective wrapping. If unloading is accomplished by crane, either the cradle supporting the reel flanges or a shaft through the arbor hole should be used. If a fork is utilized, the forks must lift the reel at 90 degrees to the flange and must be long enough to make complete lifting contact with both flanges. Under no circumstances should the forks contact the cable surface or protective wrapping. For the same reason, a web-sling arrangement should not be used around the conductor as the weight could damage the cable.
- 2. Under no circumstances should reels be dropped from the delivering vehicle to the ground.
- 3. Reels should be stored on a hard surface so that the flanges do not sink into the earth, allowing the weight of the reel and cable to rest on the cable surface. In storing, never turn the reel on the flange side for this will result in cable damage. The reels should be stored upright in a rolling position.
- 4. Cable should be stored in an area where chemical or petroleum products will not be spilled or sprayed on the cable.
- 5. When a reel of cable is rolled from one point to another, care must be taken to see that there are no objects on the surface area which could contact or damage the cable surface or protective wrapping.
- 6. If a length of cable has been cut from a reel, the cable end should be immediately resealed to prevent the entrance of moisture. Use cable seal caps (mastic and vinyl tape (see SC5.13.5).
- Installed cable that is not immediately terminated should be sealed, especially if left overnight.
- Cable should be stored in an area away from open flame or other sources of high heat.
   Reels should be stored in an area where construction equipment, falling or flying objects, or other materials will
- not contact the cable.
- 9. If an inclined ramp is used for unloading, the ramp must be wide enough to contact both flanges completely, and stopping of the reels at the bottom shall be accomplished by using the reel flanges, and not the surface of the cable.

#### INSTALLATION TEMPERATURE GUIDE FOR PRIMARY CABLES

- 1. The low temperature weakness of primary cables is the semi-conducting strand and insulation shield compounds, which have a much higher brittleness temperature than the TRXLPE insulation. If a crack initiating in the shield does not propagate through the insulation as might be expected, then immediate failure may not occur and the cable could operate for some time before failure. However, to avoid any possible damage to primary cables while installing or operating cables with elbows at extremely low temperatures, the following guidelines should be used:
  - A. Minimum temperature of cable during installation for primary TRXLP with thermosetting semicon shield is -25°C (-13°F).
  - B. For splicing or terminating primary cables, warm cable ends up to at least 32°F.
  - C. Primary cables may be operated, such as moving elbows onto a parking stand down to the same low temperature given in "A" above.
  - D. If any cable damage is suspected during installation, then an additional 12-15 feet of cable should be pulled and delivered to the Standards Laboratory for analysis. The sample must be cut from the leading section of cable to determine if any damage occurred during the pull.

#### MINIMUM BENDING RADIUS

- 1. The minimum bending radius of primary cable shall be twelve times the overall diameter of the cable.
- 2. The minimum radius specified is measured to the surface of the cable on the inside of the bend.
- 3. These bending radii are to be considered minimum recommended dimensions and are for static bends such as manhole training bends, etc., and do not apply where pulling tensions and sidewall pressures are involved.
- 4. To visualize a bending radius, determine the diameter of the cable and multiply by twelve. Use this dimension as the minimum bending radius. Scribe a circle on the floor or in the dirt and form the cable around it. See cable bending radius in the tables on SC5.4.2.

#### ENERGIZING NEW CABLE

 Since DC Hipot testing of cable and accessories can lead to insulation damage, this method is NOT reccommended for testing cables. A TDR (Time Domain Reflectometry) test set should be used to verify continuity and the integrity of the circuit. It is recommended, if possible, to energize new cable for one day at rated line voltage, prior to loading.



#### 15 KV UD CABLES

Insulated (133% level, 220 mil thick TRXLPE) single conductor cables, compressed stranding or solid, with copper concentric neutral wires. Specify total quantity in feet.

| PHASE<br>CONDUCTOR<br>SIZE, TYPE | NEUTRAL<br>CONDUCTOR NO. &<br>SIZE WIRES | AMPACITY <sup>1</sup><br>DB/DUCT | DUCT SIZE | CONDUCTOR<br>AREA IN <sup>2</sup> / (MM <sup>2</sup> ) |
|----------------------------------|------------------------------------------|----------------------------------|-----------|--------------------------------------------------------|
| #2 AL                            | 6 #14                                    | 175/126 (3PH)                    | 3" OR 4"  | 0.0616 / (39.6)                                        |
| #1/0 AL                          | 6 #14                                    | 225/163 (3PH)                    | 4"        | 0.1006 / (65.0)                                        |
| #4/0 AL                          | 11 #14                                   | 320/241 (3PH)                    | 4"        | 0.2018 / (130.6)                                       |
| 250 KCMIL AL                     | 13 #14                                   | 345/265 (3PH)                    | 6"        | 0.2392 / (153.9)                                       |
| 500 KCMIL AL                     | 25 #14                                   | 451/385 (3PH)                    | 6"        | 0.4788 / (307.8)                                       |
| 750 KCMIL AL                     | 24 #12                                   | 507/468 (3PH)                    | 6"        | 0.7204 / (463.5)                                       |
| 1000 KCMIL AL                    | 31 #12                                   | 1098/1058 (3PH) <sup>2</sup>     | 6"        | 0.9602 / (619.8)                                       |

#### DIMENSIONS/ WEIGHTS OF 15KV CABLES

| ITEM<br>DESCRIPTION | CONDUCTOR OD<br>(IN) | INSULATION OD<br>NOMINAL (IN) | OVERALL CABLE OD<br>(IN) / WGT (LBS/FT) | MINIMUM<br>BENDING<br>RADIUS |
|---------------------|----------------------|-------------------------------|-----------------------------------------|------------------------------|
| #2 AL               | 0.280                | 0.77                          | 1.08 / 0.486                            | 13"                          |
| #1/0 AL             | 0.358                | 0.85                          | 1.15 / 0.563                            | 14"                          |
| #4/0 AL             | 0.507                | 1.0                           | 1.30 / 0.803                            | 16"                          |
| 250 KCMIL AL        | 0.552                | 1.06                          | 1.38 / 0.917                            | 17"                          |
| 500 KCMIL AL        | 0.781                | 1.29                          | 1.66 / 1.534                            | 20"                          |
| 750 KCMIL AL        | 0.958                | 1.48                          | 1.90 / 2.043                            | 23"                          |
| 1000 KCMIL AL       | 1.106                | 1.62                          | 2.02 / 2.626                            | 25"                          |



#### 15 KV UD CABLES

Insulated (133% level, 220 mil thick TRXLPE) single conductor cables, compressed stranding or solid, with copper concentric neutral wires. Specify total quantity in feet.

| PHASE<br>CONDUCTOR<br>SIZE, TYPE | NEUTRAL<br>CONDUCTOR NO. &<br>SIZE WIRES | AMPACITY <sup>1</sup><br>DB/DUCT | DUCT SIZE | CONDUCTOR<br>AREA IN <sup>2</sup> / (MM <sup>2</sup> ) |
|----------------------------------|------------------------------------------|----------------------------------|-----------|--------------------------------------------------------|
| #2 CU                            | 6 #14                                    | 224/162 (3PH)                    | 3" OR 4"  | 0.0616 / (39.6)                                        |
| #1/0 CU                          | 9 #14                                    | 284/210 (3PH)                    | 4"        | 0.1006 / (65.0)                                        |
| #4/0 CU                          | 18 #14                                   | 385/307 (3PH)                    | 4"        | 0.2018 / (130.6)                                       |
| 250 KCMIL CU                     | 21 #14                                   | 410/336 (3PH)                    | 6"        | 0.2392 / (153.9)                                       |
| 500 KCMIL CU                     | 26 #12                                   | 501/471 (3PH)                    | 6"        | 0.4788 / (307.8)                                       |
| 750 KCMIL CU                     | 25 #10                                   | 559/548 (3PH)                    | 6"        | 0.7204 / (463.5)                                       |
| 1000 KCMIL CU                    | 32 #10                                   | 1338/1192 (3PH)²                 | 6"        | 0.9602 / (619.8)                                       |

# DIMENSIONS/ WEIGHTS OF 15KV CABLES

| ITEM<br>DESCRIPTION | CONDUCTOR OD<br>(IN) | INSULATION OD<br>NOMINAL (IN) | OVERALL CABLE OD<br>(IN) / WGT (LBS/FT) | MINIMUM<br>BENDING<br>RADIUS |
|---------------------|----------------------|-------------------------------|-----------------------------------------|------------------------------|
| #2 CU               | 0.280                | 0.77                          | 1.08 / 0.638                            | 13"                          |
| #1/0 CU             | 0.358                | 0.85                          | 1.15 / 0.837                            | 14"                          |
| #4/0 CU             | 0.507                | 1.0                           | 1.30 / 1.358                            | 16"                          |
| 250 KCMIL CU        | 0.552                | 1.06                          | 1.38 / 1.572                            | 17"                          |
| 500 KCMIL CU        | 0.781                | 1.29                          | 1.66 / 2.902                            | 20"                          |
| 750 KCMIL CU        | 0.958                | 1.48                          | 1.90 / 4.102                            | 23"                          |
| 1000 KCMIL CU       | 1.106                | 1.62                          | 2.02 / 5.281                            | 25"                          |

#### TEMPORARY CABLE END CAPS FOR WATER SEALING PRIMARY CABLES

Aluminum strands can be seriously affected by water. Oxidation takes place, pitting and eroding the aluminum and in some cases, completely oxidizing the strands leaving only a residue. Moisture in cable has been found to be one of the principal causes of "treeing" in the insulation, leading directly to cable failure. Moisture can also migrate to the termination device causing intermittant feeder tripping prior to failure.

Once a small amount of moisture has entered the cable, the damage has begun. Therefore, it is imperative that cable ends never be left exposed to the elements when cable terminations or splices are not immediately going to be made. Every effort must be made to seal exposed cable ends at once to prevent moisture entry.

The cold shrink end caps shown below are for temporarily sealing the ends of aluminum cable during installation and storage to prevent the entry of moisture. In all cases, the cable end must be clean and dry before the cap is installed. Cables shall not be left exposed overnight during installation work.

All cable manufacturers are required by industry standards to seal the ends of all primary underground cable leaving their factory. Cable shipments must be inspected upon arrival for cable damage or loss of the seal caps. Replacement caps shall be installed where missing, to prevent further entry of moisture. Notify CLP Engineering to followup with the supplier.

When installing primary cable end caps that are not prefilled with mastic, wrap the cable area to be sealed with several wraps of mastic tape. Finish by installing the cable end cap per manufacturer's instructions.



# Appendix C: SERVICE CONNECTION OVERHEAD CONSTRUCTION STANDARDS

The following section of the overhead service connection requirements will apply to all CLP overhead electrical distribution systems. All construction will be required to meet CLP and Industry Standards.

PLEASE NOTE: AS THIS MANUAL IS CURRENTLY A WORKING DOCUMENT AND STILL IN DEVELOPMENT, THIS SECTION WILL BE EXPANDED TO INCLUDE RELEVANT SECTIONS FROM UNIFIED FACILITIES GUIDE SPECIFICATIONS (<u>https://www.wbdg.org/ffc/dod/unified-facilities-guide-specifications-ufgs</u>) AS WELL AS LOCAL UTILITIES (TACOMA POWER AND PUGET SOUND ENERGY) AS SUCH STANDARDS CAN BE ADAPTED, MODIFIED AND INCORPORATED.







- 1. 100A cutouts used primarily to fuse equipment and laterals on loads up to 100A.
- 2. 200A cutouts used primarily to fuse equipment and laterals on loads up to 200A.
- 3. The 100A cutout may be used as a disconnect switch up to 300A with a solid blade.
- 4. For fuse sizes above 100T and 125E Slow, contact CLP Engineering for sizing.
- 5. Mount cutouts so exhaust blast of arc is directed away from pole and climbing space.



This standard lists the "T" link and "E" rated fuses to use for polemount transformers and 3Ø transformer banks in the 13.8kV system.

- "T" link fuses are used in 100A cutouts.
- "E" rated SMU-20 fuses are used in SMD-20 200A cutouts.

|                        | TRANS        | FORMER            | STANI  | DARD FUSE TY | PE RATING                |
|------------------------|--------------|-------------------|--------|--------------|--------------------------|
| VOLTAGE                | RATED<br>kVA | FULL LOAD<br>AMPS | TYPE T | SMU-20*      | SM-4<br>Maintenance Only |
|                        | 10.0         | .72               | 3 STD  | -            | -                        |
|                        | 15.0         | 1.09              | 6Т     | 5E STD.      | -                        |
|                        | 25.0         | 1.81              | 6Т     | 5E STD.      | -                        |
| 13.8kV                 | 37.5         | 2.72              | 8T     | 7E STD.      | 7E STD.                  |
| 10                     | 50.0         | 3.62              | 10T    | 7E STD.      | 7E STD.                  |
| TRANSFORMER            | 75.0         | 5.43              | 12T    | 10E STD.     | 10E STD.                 |
|                        | 100.0        | 7.25              | 12T    | 10E STD.     | 10E STD.                 |
|                        | 150.0        | 10.87             | 20T    | 15E SLOW     | 20E STD.                 |
|                        | 167.0        | 12.10             | 20T    | 15E SLOW     | 20E STD.                 |
|                        | 9.0          | .38               | 2 STD  | -            | -                        |
|                        | 30.0         | 1.26              | 6Т     | 5E STD.      | -                        |
|                        | 45.0         | 1.88              | 6T     | 5E STD.      | -                        |
| 13.8kV                 | 75.0         | 3.14              | 8T     | 7E STD.      | 7E STD.                  |
| 3Ø BANK                | 112.5        | 4.71              | 12T    | 10E STD.     | 10E STD.                 |
| (TOTAL kVA<br>OF BANK) | 150.0        | 6.28              | 15T    | 15E SLOW     | 15E STD.                 |
| , ,                    | 225.0        | 9.41              | 20T    | 15E SLOW     | 20E STD.                 |
|                        | 300.0        | 12.55             | 20T    | 15E SLOW     | 20E STD.                 |
|                        | 500.0        | 20.91             | 30T    | 30E SLOW     | 30E STD.                 |





- Size of Grounding Electrode Conductor: A bare #6 copper clad steel (CCS) conductor is the minimum size grounding conductor to be used from the earth grounding electrode to City Light and Power OH system neutral conductor (up to a maximum of 4/0 ACSR or 312 kcmil AAAC neutral size, based on NESC 93C2 requirements for multi-grounded system grounding conductors, having at least 20% of the ampacity rating of the conductors to which they are connected). A bare #6 CU is also the minimum size to be installed from the earth grounding electrode to an underground primary circuit neutral (1000kcmil AL cables and smaller). See note 3 for ground conductor sizes with static neutrals.
- Size of Equipment Grounding Conductor: The following table provides the normal size OH primary tap conductor or UG
  cable sizes used to connect various types of equipment and the appropriate size of conductor to be used to connect
  tank/ground terminals to the system neutral conductor.

<u>CAUTION</u>: These ground conductor sizes are adequate for the fault current experienced during equipment failure, but may burn open in the event a fallen primary conductor lands on a tank (resulting in an energized tank), or due to lightning backflash from a phase conductor to the pole grounding conductor on static shielded lines. Safe approach distances and energized work practices shall be followed during work whenever grounding conductors may have melted open.

| TYPE OF OH/UG/PD EQUIPMENT                                                                                        | PHASE OH (TAP)<br>CONDUCTOR OR UG<br>PRIMARY CABLE SIZE | MINIMUM RECOMMENDED<br>EQUIPMENT GROUNDING CONDUCTOR<br>SIZE (TO SYSTEM NEUTRAL) |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|
| OH ARRESTER                                                                                                       | #4 CU (600V INS)                                        | #4 CCS                                                                           |
| OH TRANSFORMER                                                                                                    | #4 CU (600V INS)                                        | #4 CCS                                                                           |
| OH CAPACITOR BANK                                                                                                 | #4 CU (600V INS)                                        | #4 CCS                                                                           |
| RISER CABLES (#1 AL. 15KV 1 & 3 PH)                                                                               | #4 CU (600V INS)                                        | #4 CCS                                                                           |
| PD / UG 1-PH TRANSFORMER / 4-WAY                                                                                  | #1 AL (15KV CABLE)                                      | #4 CU (BARE) OR LOOP #6 CU                                                       |
| PD / UG 3-PH TRANSFORMER / 4-WAYS                                                                                 | #1 OR #4/0 AL (15KV)                                    | #2 CU (BARE) OR LOOP #4 CU                                                       |
| OH / PD RECLOSER (225-AMP)                                                                                        | #2 CU (600V INS)                                        | #2 CU (BARE) OR LOOP #4 CU (IF PAD)                                              |
| OH PRIMARY METER (200-AMP)                                                                                        | #2 CU (600V INS)                                        | #2 CU (BARE)                                                                     |
| RISER CABLES (#4/0 & #1/0 AL.)                                                                                    | #2 CU (600V INS)                                        | #2 CU (BARE)                                                                     |
| RISER CABLES (1000KCMIL AL.)                                                                                      | #477 AL. (600V INS)                                     | #2/0 CU (BARE)                                                                   |
| PD PRIMARY METER (600-AMP)                                                                                        | 1000KCMIL AL CABLES                                     | #2/0 CU (BARE) OR LOOP #2 CU                                                     |
| SWITCH 600-AMP WITH METAL BASE/TANK<br>(PREFER INSULATED BASE AND INSULATED<br>SECTION IN OH OPERATING MECHANISM) | #477 (600V INS) OR<br>1000KCMIL CABLES                  | #2/0 CU (BARE) OR LOOP #2 CU<br>(TO PROVIDE 2 RETURN PATHS)                      |

The above sizing continues system neutrals at cable riser poles as well as limits temperature rise to the 250C limit of compression and mechanical connectors for CLP. "Loop" ground connections are defined as those where one wire is connected to two attachment points on the piece of equipment being grounded.

3. Size of Pole Ground Conductor from Static to Neutral: Pole ground conductor between static and lower neutral level should be at least #6 CCS unless otherwise stated by the table above for the equipment installed. This #6 CCS ground wire is adequate where available fault current is 10kA or less and the fault current return following lightning backflash includes two metallic paths (static neutral and neutral at secondary level). Where available fault current is higher than 10kA or on lines where only a static neutral is present, minimum #2 CU is recommended for the pole grounding conductor.

System & Equipment Grounds by Primary Voltage:

- A. Install two ground rods or two alternate electrodes on all 4.16kV delta-system equipment grounds.
- B. Install at least one ground rod or alternate electrode on all 12.47, 13.8 and 34.5kV multi-grounded 4-wire system and equipment grounds.
- C. Install at least 2 ground rods at any site where the system neutral is not available. Install two ground rods/electrodes at all primary cable riser poles and all OH switch poles with arresters.
- D. Besides grounds at every equipment site, NESC requires at least 4 grounds in each mile of line for multi-grounded 4-wire systems (CLP 12.47, 13.8 and 34.5kV), not counting those at service entrances.

#### 5. Overhead Pole Ground:

- A. Route the lowest 8' of pole ground conductor above grade on one side to avoid vehicle damage and cover that length with guard/moulding on all 4.16kV delta systems/equipment grounds (guard is optional per NESC on 12.47, 13.8 and 34.5kV multi-grounded 4-wire systems). Locate the pole ground beyond 8' on the same side as the neutral conductor and in the quadrant opposite from the pole climbing space.
- B. Keep a minimum 2" clearance between ground conductors and unbonded hardware to avoid Radio Frequency Inteference / Television Interference (RFI/TVI).
- C. Ground rods shall be driven and not placed in the pole hole.
- D. Route pole grounds between static and lower neutral on cthe side of the pole opposite from center phases.
- E. Pole line hardware shall remain unbonded for lightning performance (except on circuits underbuilt on transmission poles where hardware shall be bonded to avoid pole fires).

6. <u>Alternate Earth Grounding Electrode</u>: An alternate electrode to a driven ground rod is a buried counterpoise wire; at least 100-feet in length and a minimum #6 bare CCS buried 18" to 30" deep in either a straight line or in a star pattern radiating from the pole or vault. This is typically used in rocky areas where driving a ground rod is impossible. Pole butt plates do not count as an equivalent electrode. Internal vault rebar electrodes count as an equivalent of one electrode.

7. <u>Grounding Resistance Requirements</u>: Resistance testing shall be performed on the grounding system. A minimum requirement for single and multi-grounded systems at any point in the grounding system throughout a overhead grounding system with apparatus is 5 ohms. All others is 25 ohms.







|      | BILL OF MATERIALS                              |                 |     |  |  |
|------|------------------------------------------------|-----------------|-----|--|--|
| ITEM | MATERIAL                                       | MANUFACTURER ID | QTY |  |  |
| 1    | GUY WIRE, 12M, ALUMO WELD                      |                 | TBD |  |  |
| 2    | GRIP, 12.5M, 7 STRAND, GUY WIRE                |                 | 5   |  |  |
| 3    | GRIP, GUY WIRE, STRANDVISE, 12M, SHORT<br>BAIL |                 | 1   |  |  |
| 4    | NUT, GUY, THIMBLE-EYE, 3/4"                    |                 | 2   |  |  |
| 5    | WASHER, CURVED, 3/4"                           |                 | 2   |  |  |
| 6    | BOLT, MACHINE, GALVANIZED, 3/4" x FC<br>W/NUT  |                 | 2   |  |  |
| 7    | INSULATOR, STRAIN, GUY, FIBERGLASS             |                 | 2   |  |  |

& POWER

APPROVED AS OF

5/31/2019



<u>NOTES:</u> 1. Typical arm guy, for unbalanced stresses on crossarms.



5/31/2019

|                 |      | BILL OF M                                     | IATERIALS       |
|-----------------|------|-----------------------------------------------|-----------------|
|                 | ITEM | MATERIAL                                      | MANUFACTURER ID |
|                 | 1    | ANCHOR, SCREW, HELIX                          |                 |
| $\frown$        | 2    | ANCHOR, SCREW, TRIPLE HELIX                   |                 |
| $5 \rightarrow$ | 3    | EXTENSION ROD, ANCHOR, 1" x 3'-1/2"<br>CIRCLE |                 |
|                 | 4    | COUPLING, EXTENSION ROD, 1"                   |                 |
|                 | 5    | EYE NUT, TRIPLE, 1' ROUND                     |                 |
|                 | 6    | EXTENSION ROD ANCHOR, 1-1/2" x 5'<br>SQUARE   |                 |
|                 | 7    | EYE NUT, TRIPLE, 1-1/2" SQUARE                |                 |
|                 |      |                                               | _               |
|                 |      |                                               | 1               |
|                 |      |                                               | - <u>)</u>      |
|                 |      | T V                                           |                 |
| $\frown$        |      |                                               |                 |
|                 |      |                                               |                 |
| $\mathbf{U}$    |      |                                               |                 |
|                 |      | 2                                             |                 |
|                 |      | ۷                                             |                 |
|                 |      | - Lass -                                      |                 |
|                 |      |                                               |                 |
|                 |      |                                               |                 |
|                 |      |                                               |                 |

| Soil  |                                                                                                                                                                         | Ultimate Holding Strength of Anchor in This Soil Type (lbs.) |                         |               |               |           |           |           |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|---------------|---------------|-----------|-----------|-----------|--|--|--|--|
| Class | Soil Description                                                                                                                                                        | "A1"<br>Screw                                                | "A2"<br>Triple<br>Helix | "A3"<br>Plate | "A4"<br>Plate | MR-1      | MR-2      | MR-SR     |  |  |  |  |
| 1     | Very dense and/or cemented<br>sands; coarse gravel and<br>cobbles                                                                                                       | 36,000[1]                                                    | N/A                     | 23,000[1]     | 45,000        | 36,000[1] | 36,000[1] | N/A       |  |  |  |  |
| 2     | Dense fine sands; very hard<br>silts and clays                                                                                                                          | 28,000                                                       | 69,000                  | 23,000[1]     | 45,000        | 36,000[1] | 28,000    | 36,000[1] |  |  |  |  |
| 3     | Dense sands and gravel; hard<br>silts and clays; glacial till                                                                                                           | 24,000                                                       | 61,000                  | 23,000[1]     | 45,000        | 36,000[1] | 22,000    | 36,000[1] |  |  |  |  |
| 4     | Medium dense sand and<br>gravel; very stiff to hard silts<br>and clays; glacial till; hardpan<br>(typical of most of the<br>Tacoma Power service<br>territory)          | 20,000                                                       | 53,000                  | 23,000[1]     | 37,000        | 20,000    | 18,000    | 34,000    |  |  |  |  |
| 5     | Medium dense coarse sands<br>and sandy gravels; stiff to very<br>stiff silts and clays                                                                                  | 16,000                                                       | 45,000                  | 23,000[1]     | 30,000        | 20,000    | 12,000    | 24,000    |  |  |  |  |
| 6     | Loose to medium dense fine to<br>coarse sands to stiff clays and<br>silts; dense hydraulic or<br>compacted fill<br>(typical of the Tideflats and<br>City of Fife soils) | 12,000                                                       | 37,000                  | 23,000[1]     | 23,500        | 15,000    | 10,000    | 18,000    |  |  |  |  |
| 7[2]  | Loose fine sands; medium-stiff<br>and varied clays; fill; flood plain<br>soils<br>(typical of the Tideflats and<br>City of Fife soils)                                  | 9,000                                                        | 29,000                  | 18,000        | 18,000        | 12,000    | 8,000     | 14,000    |  |  |  |  |

[1] Holding strength limited by anchor rod

[2] Install anchors deep enough to penetrate Class 5 or 6 soil underlying the Class 7 soil.

## NOTES:

1. Install anchors no closer than 6-ft to another anchor.

2. Holding strength of anchor assemblies apply to properly installed anchors only. Failure to install the anchor rod within 10-deg of alignment with the guy load may significantly lower the holding strength of the anchor assembly.



QTY 1



5/31/2019



- 1. This standard may be used on either tangent or deadend structures, existing, or new.
- 2. Keep arrester lead lengths as short as possible on both lines and ground leads (across transformer).
- 3. Mount cutout so arc blast exhaust is directly away from pole.
- 4. Connect transformer ground lug to system primary neutral or pole ground if neutral not available.



#### OVERHEAD THREE-PHASE 120/208 WYE VOLT SERVICE DELTA CONNECTED PRIMARY - WYE CONNECTED SECONDARY

NOTES:

1. Connect 12.47kV or 13.8kV Transformer in DELTA on high voltage side on 12.47kV or 13.8kV system.

2. All transformers in a bank shall be the same type and same kVA size.

3. Secondary terminals may not be arranged as shown- X1 & X3 will swap positions for transformers that have primary coils at 12kV & higher.



#### OVERHEAD THREE-PHASE 277/480 VOLT SERVICE DELTA CONNECTED PRIMARY - WYE CONNECTED SECONDARY



SC6.7.2

APPROVED AS OF

5/31/2019



|      | BILL OF MA         | TERIALS         |     |
|------|--------------------|-----------------|-----|
| ITEM | MATERIAL           | MANUFACTURER ID | QTY |
| 1    | FUSED CUTOUT       |                 | 2   |
| 2    | DOWN GUY           |                 | 1   |
| 3    | DEAD END INSULATOR |                 | 2   |
| 4    | DOUBLE CROSS ARM   |                 | 2   |
| 5    | HOT LINE CLAMP     |                 | 2   |
| 5    | HOT LINE STIRRUP   |                 | 2   |
| 6    | ARM MOUNTED PIN    |                 | 2   |



- 1. Contact CLP field representative or engineering for corssarm dimensions and applications.
- 2. Vertical spacing of crossarms centerline to centerline is 36-in for #4/0 and smaller conductor and 48-in if larger than #4/0.
- 3. Provide 6-in minimum separation from guy hardware to primiary phase and neutral hardware.
- 4. For slack spans keep spans as short as possible (100-ft max), do not use automatic deadends or splices, and rake and key the pole when possible.





25kV VISE TOP PIN INSULATOR ON FIBERGLASS CROSSARM.

- 1. Contact CLP field representative or engineering for corssarm dimensions and applications.
- 2. Provide 6-in minimum separation from guy hardware to primiary phase and neutral hardware.



|      | BILL OF MA            | ATERIALS        |     |
|------|-----------------------|-----------------|-----|
| ITEM | MATERIAL              | MANUFACTURER ID | QTY |
| 1    | CROSSARM, DOUBLE      | TBD             | 1   |
| 2    | DEADEND ASSEMBLY, ARM | TBD             | 3   |
| 3    | DOWNGUY WITH ANCHOR   | TBD             | 2   |



- Contact CLP field representative or engineering for corssarm dimensions and applications.
   Provide 6-in minimum separation from guy hardware to primiary phase and neutral hardware.



|      | BILL OF MA                             | TERIALS         |     |
|------|----------------------------------------|-----------------|-----|
| ITEM | MATERIAL                               | MANUFACTURER ID | QTY |
| 1    | CROSSARM, DOUBLE                       |                 | 1   |
| 2    | DEADEND, ARM                           |                 | 3   |
| 3    | DOWNGUY                                |                 | 1   |
| 3    | ANCHOR                                 |                 | 1   |
| 4    | EXTENSION LINK, LIGHT, 14"             |                 | 1   |
| 5    | ARM-MOUNTED PIN, 15KV                  |                 | 2   |
| 6    | CLAMP, STIRRUP (FOR SMALLER THAN 4/0)  |                 | 6   |
| 6    | CLAMP, HOT LINE (FOR SMALLER THAN 4/0) |                 | 6   |
| 6    | *CONNECTOR, WEDGE (FOR 4/0 AND LARGER) |                 | 6   |
| 7    | CUTOUT, 1PH, 15KV, ARM-MOUNT           |                 | 3   |



- 1. Contact CLP field representative or engineering for corssarm dimensions and applications.
- 2. Vertical spacing of crossarms centerline to centerline is 36-in for #4/0 and smaller conductor and 48-in if larger than #4/0.
- 3. Provide 6-in minimum separation from guy hardware to primiary phase and neutral hardware.



|                     | SPAN LENGTH (FEET) / SAG (INCHES) |             |             |               |                |                |                |                |                |                |                 |                 |                      |
|---------------------|-----------------------------------|-------------|-------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|----------------------|
| WIRE<br>SIZE        | TEMP<br>°F                        | 50          | 70          | 90            | 110            | 130            | 150            | 170            | 190            | 210            | 230             | 250             | I.T.                 |
| #2<br>ACSR          | 30<br>40<br>50                    | 1<br>1<br>2 | 2<br>3<br>3 | 4<br>4<br>5   | 5<br>6<br>7    | 7<br>9<br>10   | 10<br>12<br>14 | 13<br>15<br>18 | 16<br>19<br>22 | 19<br>23<br>27 | 23<br>27<br>32  | 27<br>32<br>38  | 311<br>264<br>225    |
| 6/1<br>SPARROW      | 60<br>70<br>80                    | 2<br>2<br>2 | 3<br>4<br>5 | 6<br>7<br>7   | 9<br>10<br>11  | 12<br>14<br>16 | 16<br>18<br>21 | 21<br>24<br>27 | 26<br>29<br>33 | 31<br>36<br>41 | 38<br>43<br>49  | 44<br>51<br>58  | 192<br>167<br>148    |
| RBS<br>2850         | 90<br>167<br>ML                   | 3<br>4<br>3 | 5<br>7<br>6 | 8<br>12<br>10 | 12<br>18<br>15 | 17<br>26<br>21 | 23<br>34<br>28 | 30<br>44<br>35 | 37<br>55<br>44 | 45<br>67<br>54 | 54<br>80<br>65  | 64<br>95<br>77  | 133<br>90<br>712     |
| 1/0                 | 30<br>40<br>50                    | 1<br>1<br>1 | 1<br>2<br>2 | 2<br>3<br>3   | 4<br>4<br>5    | 5<br>6<br>6    | 7<br>8<br>9    | 9<br>10<br>11  | 11<br>12<br>14 | 13<br>15<br>17 | 16<br>18<br>20  | 19<br>21<br>24  | 723<br>645<br>568    |
| 6/1<br>RAVEN        | 60<br>70<br>80                    | 1<br>1<br>1 | 2<br>2<br>3 | 4<br>4<br>5   | 5<br>6<br>7    | 7<br>9<br>10   | 10<br>11<br>13 | 13<br>15<br>17 | 16<br>18<br>21 | 19<br>22<br>26 | 23<br>27<br>31  | 27<br>32<br>37  | 495<br>428<br>368    |
| RBS<br>4380         | 90<br>167<br>ML                   | 2<br>3<br>2 | 3<br>6<br>4 | 6<br>10<br>7  | 8<br>16<br>11  | 12<br>22<br>15 | 15<br>29<br>20 | 20<br>37<br>26 | 25<br>46<br>33 | 30<br>57<br>40 | 36<br>68<br>48  | 43<br>80<br>56  | 318<br>169<br>1095   |
| 4/0<br>ACSP         | 30<br>40<br>50                    | 1<br>1<br>1 | 1<br>1<br>2 | 2<br>2<br>3   | 3<br>4<br>4    | 5<br>5<br>6    | 6<br>7<br>7    | 8<br>9<br>10   | 10<br>11<br>12 | 12<br>13<br>15 | 14<br>16<br>18  | 17<br>18<br>21  | 1635<br>1476<br>1318 |
| 6/1<br>PENGUIN      | 60<br>70<br>80                    | 1<br>1<br>1 | 2<br>2<br>2 | 3<br>3<br>4   | 5<br>5<br>6    | 6<br>7<br>8    | 8<br>10<br>11  | 11<br>12<br>14 | 14<br>16<br>18 | 17<br>19<br>22 | 20<br>23<br>26  | 23<br>27<br>31  | 1163<br>1014<br>877  |
| RBS<br>8350         | 90<br>167<br>ML                   | 1<br>3<br>2 | 3<br>6<br>3 | 5<br>10<br>5  | 7<br>15<br>8   | 10<br>20<br>11 | 13<br>27<br>14 | 17<br>35<br>18 | 21<br>43<br>23 | 26<br>53<br>28 | 31<br>64<br>34  | 36<br>75<br>40  | 755<br>363<br>2104   |
| 477                 | 30<br>40<br>50                    | 1<br>2<br>2 | 3<br>3<br>4 | 4<br>5<br>6   | 6<br>8<br>9    | 9<br>11<br>13  | 12<br>14<br>17 | 15<br>18<br>22 | 19<br>23<br>27 | 24<br>28<br>33 | 28<br>34<br>40  | 33<br>40<br>47  | 1256<br>1052<br>890  |
| 19 STRAND<br>COSMOS | 60<br>70<br>80                    | 2<br>2<br>3 | 4<br>5<br>5 | 7<br>8<br>9   | 11<br>12<br>13 | 15<br>17<br>19 | 20<br>22<br>25 | 25<br>29<br>32 | 32<br>36<br>40 | 39<br>44<br>49 | 46<br>53<br>59  | 55<br>62<br>70  | 767<br>675<br>604    |
| RBS<br>8360         | 90<br>167<br>ML                   | 3<br>5<br>2 | 6<br>9<br>4 | 10<br>16<br>7 | 15<br>23<br>10 | 21<br>32<br>15 | 28<br>43<br>19 | 35<br>56<br>25 | 44<br>69<br>31 | 54<br>85<br>38 | 65<br>102<br>46 | 76<br>120<br>54 | 550<br>350<br>2090   |

I.T. = Initial Tension (lbs)

ML = Maximum Loading (1/4 inch ice with 4 lb/ft2 (40 mph) wind at 15°F)



| SPAN LENGTH (FEET) / SAG (INCHES) |            |     |     |     |     |     |     |     |     |     |     |     |      |
|-----------------------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| WIRE<br>SIZE                      | TEMP<br>°F | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280 | 300 | I.T. |
|                                   | 30         | 7   | 10  | 14  | 18  | 23  | 28  | 34  | 41  | 48  | 56  | 64  | 192  |
| #2                                | 40         | 8   | 11  | 15  | 20  | 25  | 31  | 38  | 45  | 53  | 61  | 71  | 174  |
| ACSR                              | 50         | 9   | 12  | 17  | 22  | 28  | 34  | 41  | 49  | 58  | 67  | 77  | 160  |
| 6/1                               | 60         | 9   | 13  | 18  | 24  | 30  | 37  | 45  | 53  | 62  | 72  | 83  | 148  |
| SPARROW                           | 70         | 10  | 14  | 19  | 25  | 32  | 39  | 48  | 57  | 67  | 77  | 89  | 138  |
|                                   | 80         | 10  | 15  | 21  | 27  | 34  | 42  | 51  | 60  | 71  | 82  | 95  | 130  |
| RBS                               | 90         | 11  | 16  | 22  | 28  | 36  | 44  | 54  | 64  | 75  | 87  | 100 | 123  |
| 2850                              | 167        | 14  | 20  | 28  | 36  | 46  | 57  | 68  | 81  | 96  | 111 | 127 | 97   |
|                                   | ML         | 12  | 18  | 24  | 31  | 40  | 49  | 59  | 71  | 83  | 96  | 110 | 713  |
|                                   | 30         | 4   | 6   | 8   | 10  | 13  | 16  | 19  | 22  | 26  | 31  | 35  | 559  |
|                                   | 40         | 4   | 6   | 9   | 11  | 14  | 18  | 21  | 25  | 30  | 34  | 39  | 496  |
| 1/0                               | 50         | 5   | 7   | 10  | 13  | 16  | 20  | 24  | 29  | 33  | 39  | 45  | 440  |
| ACSR                              | 60         | 6   | 8   | 11  | 14  | 18  | 22  | 27  | 32  | 38  | 44  | 50  | 391  |
| 6/1<br>DAVEN                      | 70         | 6   | 9   | 12  | 16  | 20  | 25  | 30  | 36  | 42  | 49  | 56  | 350  |
| RAVEN                             | 80         | 7   | 10  | 14  | 18  | 22  | 28  | 33  | 40  | 47  | 54  | 62  | 315  |
| RBS                               | 90         | 8   | 11  | 15  | 19  | 25  | 30  | 37  | 44  | 51  | 59  | 68  | 287  |
| 4380                              | 167        | 12  | 17  | 23  | 30  | 38  | 46  | 56  | 67  | 79  | 91  | 105 | 187  |
|                                   | ML         | 9   | 13  | 18  | 23  | 29  | 36  | 44  | 52  | 61  | 71  | 81  | 1095 |
|                                   | 30         | 3   | 4   | 6   | 8   | 10  | 12  | 14  | 17  | 20  | 23  | 26  | 1488 |
|                                   | 40         | 3   | 5   | 6   | 8   | 11  | 13  | 16  | 19  | 22  | 26  | 29  | 1340 |
| 4/0                               | 50         | 4   | 5   | 7   | 9   | 12  | 15  | 18  | 21  | 25  | 29  | 33  | 1198 |
| ACSR                              | 60         | 4   | 6   | 8   | 10  | 13  | 16  | 20  | 24  | 28  | 32  | 37  | 1065 |
|                                   | 70         | 5   | 7   | 9   | 12  | 15  | 19  | 22  | 27  | 31  | 36  | 42  | 943  |
| FENGUIN                           | 80         | 5   | 8   | 10  | 13  | 17  | 21  | 25  | 30  | 35  | 41  | 47  | 836  |
| RBS                               | 90         | 6   | 8   | 11  | 15  | 19  | 23  | 28  | 34  | 40  | 46  | 53  | 744  |
| 8350                              | 167        | 10  | 15  | 20  | 27  | 34  | 42  | 50  | 60  | 70  | 81  | 94  | 420  |
|                                   | ML         | 6   | 9   | 12  | 16  | 20  | 25  | 30  | 36  | 42  | 49  | 57  | 2087 |
|                                   | 30         | 6   | 9   | 12  | 15  | 19  | 24  | 29  | 34  | 40  | 47  | 54  | 1122 |
|                                   | 40         | 7   | 10  | 13  | 17  | 22  | 27  | 33  | 39  | 46  | 53  | 61  | 988  |
| 477                               | 50         | 8   | 11  | 15  | 20  | 25  | 31  | 37  | 44  | 52  | 60  | 69  | 881  |
|                                   | 60         | 8   | 12  | 17  | 22  | 27  | 34  | 41  | 49  | 57  | 66  | 76  | 797  |
| 19 51 KAND                        | 70         | 9   | 13  | 18  | 24  | 30  | 37  | 45  | 53  | 62  | 72  | 83  | 729  |
| CUSINIUS                          | 80         | 10  | 14  | 20  | 26  | 32  | 40  | 48  | 57  | 67  | 78  | 90  | 674  |
| RBG                               | 90         | 11  | 15  | 21  | 27  | 35  | 43  | 52  | 62  | 72  | 84  | 96  | 628  |
| 8360                              | 167        | 15  | 22  | 30  | 40  | 50  | 62  | 75  | 89  | 104 | 121 | 139 | 436  |
| 0000                              | ML         | 9   | 12  | 17  | 22  | 28  | 34  | 42  | 50  | 58  | 68  | 78  | 2090 |

I.T. = Initial Tension (lbs)

ML = Maximum Loading (1/4 inch ice with 4 lb/ft2 (40 mph) wind at  $15^{\circ}$ F)



|                     | SPAN LENGTH (FEET) / SAG (INCHES) |                |                |                |                       |                |                       |                       |                       |                   |                       |                       |                      |
|---------------------|-----------------------------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-----------------------|-----------------------|----------------------|
| WIRE<br>SIZE        | TEMP<br>°F                        | 150            | 170            | 190            | 210                   | 230            | 250                   | 270                   | 290                   | 310               | 330                   | 350                   | I.T.                 |
| #2<br>ACSR          | 30<br>40<br>50                    | 20<br>21<br>22 | 26<br>27<br>29 | 33<br>34<br>36 | 40<br>42<br>44        | 48<br>50<br>52 | 56<br>59<br>62        | 66<br>69<br>72        | 76<br>80<br>83        | 87<br>91<br>95    | 98<br>103<br>108      | 110<br>116<br>121     | 152<br>144<br>138    |
| 6/1<br>SPARROW      | 60<br>70<br>80                    | 23<br>24<br>25 | 30<br>31<br>32 | 37<br>39<br>40 | 46<br>47<br>49        | 55<br>57<br>59 | 65<br>67<br>70        | 75<br>78<br>81        | 87<br>90<br>94        | 99<br>103<br>107  | 112<br>117<br>121     | 127<br>132<br>136     | 132<br>127<br>123    |
| 2850                | 90<br>167<br>ML                   | 26<br>30<br>28 | 33<br>39<br>35 | 42<br>49<br>44 | 51<br>60<br>54        | 61<br>72<br>65 | 72<br>85<br>77        | 84<br>99<br>89        | 97<br>114<br>103      | 111<br>130<br>118 | 126<br>148<br>134     | 141<br>166<br>150     | 119<br>101<br>712    |
| 1/0<br>ACSR         | 30<br>40<br>50                    | 12<br>13<br>14 | 15<br>16<br>18 | 18<br>20<br>22 | 23<br>25<br>27        | 27<br>30<br>32 | 32<br>35<br>38        | 37<br>41<br>44        | 43<br>47<br>51        | 49<br>54<br>59    | 56<br>61<br>66        | 63<br>69<br>75        | 426<br>388<br>357    |
| 6/1<br>RAVEN        | 60<br>70<br>80                    | 15<br>16<br>17 | 19<br>20<br>22 | 24<br>26<br>27 | 29<br>31<br>33        | 35<br>37<br>40 | 41<br>44<br>47        | 48<br>52<br>55        | 55<br>60<br>64        | 63<br>68<br>73    | 72<br>77<br>82        | 81<br>87<br>93        | 330<br>307<br>288    |
| RBS<br>4380         | 90<br>167<br>ML                   | 18<br>24<br>20 | 23<br>31<br>26 | 29<br>39<br>33 | 35<br>48<br>40        | 43<br>58<br>48 | 50<br>68<br>56        | 59<br>79<br>66        | 68<br>92<br>76        | 77<br>105<br>87   | 88<br>119<br>98       | 98<br>134<br>111      | 271<br>200<br>1095   |
| 4/0<br>ACSR         | 30<br>40<br>50                    | 7<br>8<br>9    | 10<br>11<br>12 | 12<br>13<br>15 | 15<br>16<br>18        | 17<br>19<br>21 | 21<br>23<br>25        | 24<br>27<br>29        | 28<br>31<br>34        | 32<br>35<br>39    | 36<br>40<br>44        | 40<br>45<br>49        | 1326<br>1199<br>1082 |
| 6/1<br>PENGUIN      | 60<br>70<br>80                    | 10<br>11<br>12 | 13<br>14<br>16 | 16<br>18<br>20 | 20<br>22<br>24        | 24<br>26<br>29 | 28<br>31<br>34        | 33<br>36<br>40        | 38<br>42<br>46        | 43<br>47<br>52    | 49<br>54<br>59        | 55<br>60<br>66        | 977<br>884<br>805    |
| RBS<br>8350         | 90<br>167<br>ML                   | 13<br>21<br>14 | 17<br>27<br>18 | 21<br>34<br>22 | 26<br>41<br>27        | 31<br>50<br>33 | 37<br>59<br>39        | 43<br>68<br>45        | 50<br>79<br>52        | 57<br>90<br>60    | 65<br>102<br>68       | 73<br>115<br>76       | 737<br>466<br>2088   |
| 477<br>AAC          | 30<br>40<br>50                    | 15<br>16<br>17 | 19<br>20<br>22 | 23<br>26<br>28 | 29<br>31<br><u>34</u> | 34<br>37<br>41 | 41<br>44<br><u>48</u> | 47<br>52<br><u>56</u> | 55<br>60<br><u>65</u> | 62<br>68<br>74    | 71<br>77<br><u>84</u> | 79<br>87<br><u>94</u> | 1037<br>948<br>876   |
| 19 STRAND<br>COSMOS | 60<br>70<br>80                    | 19<br>20<br>21 | 24<br>25<br>27 | 30<br>32<br>34 | 36<br>39<br>41        | 44<br>47<br>49 | 52<br>55<br>58        | 60<br>64<br>68        | 69<br>74<br>79        | 79<br>85<br>90    | 90<br>96<br>102       | 101<br>108<br>114     | 815<br>764<br>720    |
| RBS<br>8360         | 90<br>167<br>ML                   | 22<br>30<br>19 | 28<br>38<br>25 | 36<br>48<br>31 | 43<br>59<br>38        | 52<br>70<br>45 | 62<br>83<br>53        | 72<br>97<br>62        | 83<br>112<br>72       | 95<br>128<br>82   | 107<br>145<br>93      | 121<br>163<br>104     | 683<br>506<br>1912   |

I.T. = Initial Tension (lbs)

ML = Maximum Loading (1/4 inch ice with 4 lb/ft2 (40 mph) wind at  $15^{\circ}$ F)



|                     | SPAN LENGTH (FEET) / SAG (INCHES) |                |                |                |                |                 |                   |                   |                   |                   |                   |                   |                     |
|---------------------|-----------------------------------|----------------|----------------|----------------|----------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|
| WIRE<br>SIZE        | TEMP<br>°F                        | 200            | 220            | 240            | 260            | 280             | 300               | 320               | 340               | 360               | 380               | 400               | I.T.                |
| #2<br>ACSR          | 30<br>40<br>50                    | 40<br>41<br>43 | 49<br>50<br>52 | 58<br>60<br>61 | 68<br>70<br>72 | 79<br>81<br>83  | 91<br>93<br>96    | 103<br>106<br>109 | 116<br>120<br>123 | 130<br>134<br>138 | 145<br>150<br>15  | 161<br>166<br>171 | 136<br>132<br>128   |
| 6/1<br>SPARROW      | 60<br>70<br>80                    | 44<br>45<br>46 | 53<br>54<br>56 | 63<br>65<br>66 | 74<br>76<br>78 | 86<br>88<br>90  | 98<br>101<br>103  | 112<br>115<br>118 | 126<br>130<br>133 | 142<br>145<br>149 | 158<br>162<br>166 | 175<br>180<br>184 | 125<br>122<br>119   |
| RBS<br>2850         | 90<br>167<br>ML                   | 47<br>53<br>49 | 57<br>64<br>59 | 68<br>76<br>71 | 79<br>89<br>83 | 92<br>104<br>96 | 106<br>119<br>111 | 120<br>135<br>126 | 136<br>153<br>142 | 152<br>171<br>159 | 170<br>191<br>177 | 188<br>212<br>197 | 116<br>103<br>712   |
| 1/0                 | 30<br>40<br>50                    | 25<br>26<br>28 | 30<br>32<br>34 | 36<br>38<br>40 | 42<br>44<br>47 | 48<br>51<br>54  | 56<br>59<br>62    | 63<br>67<br>71    | 71<br>76<br>80    | 80<br>85<br>90    | 89<br>95<br>100   | 99<br>105<br>111  | 352<br>332<br>314   |
| 6/1<br>RAVEN        | 60<br>70<br>80                    | 29<br>31<br>32 | 35<br>37<br>39 | 42<br>44<br>46 | 49<br>52<br>54 | 57<br>60<br>63  | 66<br>69<br>72    | 75<br>78<br>82    | 84<br>88<br>92    | 94<br>99<br>104   | 105<br>110<br>115 | 117<br>122<br>128 | 298<br>285<br>272   |
| RBS<br>4380         | 90<br>167<br>ML                   | 33<br>42<br>36 | 40<br>50<br>44 | 48<br>60<br>52 | 56<br>71<br>61 | 65<br>82<br>71  | 75<br>94<br>81    | 85<br>107<br>92   | 96<br>121<br>104  | 108<br>135<br>117 | 120<br>151<br>130 | 133<br>167<br>145 | 262<br>209<br>1095  |
| 4/0                 | 30<br>40<br>50                    | 15<br>16<br>18 | 18<br>20<br>21 | 21<br>23<br>25 | 25<br>27<br>30 | 29<br>32<br>35  | 33<br>36<br>40    | 38<br>42<br>45    | 43<br>47<br>51    | 48<br>53<br>57    | 54<br>59<br>64    | 59<br>65<br>71    | 1176<br>1077<br>988 |
| 6/1<br>PENGUIN      | 60<br>70<br>80                    | 19<br>21<br>22 | 23<br>25<br>27 | 28<br>30<br>32 | 32<br>35<br>38 | 38<br>41<br>44  | 43<br>47<br>50    | 19<br>53<br>57    | 55<br>60<br>64    | 62<br>67<br>72    | 69<br>75<br>81    | 77<br>83<br>89    | 909<br>842<br>783   |
| RBS<br>8350         | 90<br>167<br>ML                   | 24<br>35<br>25 | 29<br>42<br>30 | 34<br>50<br>36 | 40<br>59<br>42 | 47<br>68<br>49  | 54<br>78<br>56    | 61<br>89<br>63    | 69<br>100<br>72   | 77<br>113<br>80   | 86<br>125<br>89   | 96<br>139<br>99   | 732<br>503<br>2088  |
| 477<br>AAC          | 30<br>40<br>50                    | 27<br>29<br>31 | 33<br>35<br>37 | 39<br>42<br>44 | 46<br>49<br>52 | 54<br>57<br>60  | 61<br>65<br>69    | 70<br>75<br>79    | 79<br>84<br>89    | 89<br>94<br>100   | 99<br>105<br>111  | 109<br>116<br>123 | 985<br>924<br>872   |
| 19 STRAND<br>COSMOS | 60<br>70<br>80                    | 33<br>34<br>36 | 39<br>41<br>43 | 47<br>49<br>51 | 55<br>58<br>60 | 64<br>67<br>70  | 73<br>77<br>80    | 83<br>87<br>92    | 94<br>99<br>103   | 105<br>111<br>116 | 117<br>123<br>129 | 130<br>137<br>143 | 827<br>787<br>752   |
| RBS<br>8360         | 90<br>167<br>ML                   | 37<br>48<br>34 | 45<br>58<br>41 | 54<br>69<br>48 | 63<br>81<br>57 | 73<br>94<br>66  | 84<br>107<br>76   | 95<br>122<br>86   | 108<br>138<br>97  | 121<br>155<br>109 | 135<br>173<br>121 | 149<br>191<br>135 | 722<br>563<br>2090  |

I.T. = Initial Tension (lbs)

ML = Maximum Loading (1/4 inch ice with 4 lb/ft2 (40 mph) wind at  $15^{\circ}$ F)



|                            | SPAN LENGTH (FEET) / SAG (INCHES) |             |              |               |                |                |                |                |                |                |                 |                 |                     |
|----------------------------|-----------------------------------|-------------|--------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|---------------------|
| WIRE<br>SIZE               | TEMP<br>°F                        | 50          | 70           | 90            | 110            | 130            | 150            | 170            | 190            | 210            | 230             | 250             | I.T.                |
| #2<br>ACSR                 | 30<br>40<br>50                    | 1<br>2<br>2 | 3<br>3<br>4  | 4<br>5<br>6   | 7<br>8<br>9    | 9<br>11<br>13  | 12<br>15<br>17 | 16<br>19<br>22 | 20<br>23<br>27 | 24<br>29<br>33 | 29<br>34<br>40  | 34<br>41<br>47  | 249<br>211<br>181   |
| 6/1<br>SPARROW             | 60<br>70<br>80                    | 2<br>2<br>3 | 4<br>5<br>5  | 7<br>8<br>9   | 10<br>12<br>13 | 15<br>16<br>18 | 19<br>22<br>24 | 25<br>28<br>31 | 31<br>35<br>39 | 38<br>43<br>47 | 46<br>51<br>57  | 54<br>61<br>67  | 158<br>141<br>127   |
| RBS<br>2850                | 90<br>167<br>ML                   | 3<br>4<br>3 | 6<br>8<br>6  | 9<br>13<br>10 | 14<br>19<br>15 | 20<br>26<br>21 | 26<br>35<br>28 | 34<br>45<br>35 | 42<br>56<br>44 | 52<br>68<br>54 | 62<br>82<br>65  | 73<br>97<br>77  | 117<br>88<br>712    |
| 1/0                        | 30<br>40<br>50                    | 1<br>1<br>1 | 2<br>2<br>2  | 3<br>3<br>4   | 4<br>5<br>6    | 6<br>7<br>8    | 8<br>10<br>11  | 10<br>12<br>15 | 13<br>15<br>18 | 16<br>19<br>22 | 19<br>22<br>27  | 22<br>26<br>31  | 607<br>515<br>433   |
| ACSR<br>6/1<br>RAVEN       | 60<br>70<br>80                    | 1<br>2<br>2 | 3<br>3<br>4  | 5<br>6<br>7   | 7<br>8<br>10   | 10<br>12<br>14 | 13<br>16<br>18 | 17<br>20<br>23 | 22<br>25<br>29 | 26<br>31<br>36 | 32<br>37<br>43  | 37<br>44<br>51  | 365<br>311<br>269   |
| RBS<br>4380                | 90<br>167<br>ML                   | 2<br>3<br>2 | 4<br>6<br>4  | 7<br>11<br>7  | 11<br>16<br>11 | 15<br>22<br>15 | 21<br>30<br>20 | 26<br>38<br>26 | 33<br>48<br>33 | 40<br>58<br>40 | 48<br>70<br>48  | 57<br>82<br>56  | 238<br>165<br>1094  |
| 4/0                        | 30<br>40<br>50                    | 1<br>1<br>1 | 2<br>2<br>2  | 3<br>3<br>4   | 4<br>4<br>5    | 5<br>6<br>7    | 7<br>8<br>10   | 9<br>11<br>13  | 11<br>13<br>16 | 14<br>16<br>19 | 17<br>20<br>23  | 20<br>23<br>27  | 1377<br>1179<br>997 |
| 6/1<br>PENGUIN             | 60<br>70<br>80                    | 1<br>2<br>2 | 3<br>3<br>4  | 4<br>5<br>6   | 6<br>7<br>9    | 9<br>10<br>12  | 12<br>14<br>16 | 15<br>18<br>21 | 19<br>22<br>26 | 23<br>27<br>32 | 28<br>33<br>38  | 33<br>39<br>45  | 838<br>707<br>604   |
| RBS<br>8350                | 90<br>167<br>ML                   | 2<br>3<br>2 | 4<br>6<br>3  | 7<br>10<br>5  | 10<br>15<br>8  | 14<br>21<br>11 | 19<br>28<br>14 | 24<br>36<br>18 | 30<br>45<br>23 | 37<br>55<br>28 | 44<br>66<br>34  | 52<br>77<br>40  | 526<br>353<br>2003  |
| 477                        | 30<br>40<br>50                    | 2<br>2<br>2 | 4<br>4<br>5  | 6<br>7<br>8   | 9<br>10<br>12  | 12<br>14<br>17 | 16<br>19<br>22 | 21<br>25<br>28 | 26<br>31<br>35 | 32<br>38<br>43 | 38<br>45<br>52  | 45<br>53<br>61  | 931<br>789<br>686   |
| AAC<br>19 STRAND<br>COSMOS | 60<br>70<br>80                    | 3<br>3<br>3 | 5<br>6<br>6  | 9<br>10<br>11 | 13<br>15<br>16 | 19<br>21<br>22 | 25<br>27<br>30 | 32<br>35<br>38 | 40<br>44<br>48 | 49<br>54<br>58 | 58<br>64<br>70  | 69<br>76<br>83  | 610<br>553<br>508   |
| RBS<br>8360                | 90<br>167<br>ML                   | 4<br>5<br>2 | 7<br>10<br>4 | 12<br>17<br>7 | 17<br>25<br>10 | 24<br>35<br>15 | 32<br>47<br>19 | 41<br>60<br>25 | 52<br>75<br>31 | 63<br>92<br>38 | 76<br>110<br>46 | 89<br>130<br>54 | 471<br>324<br>1883  |

F.T. = Final Tension (lbs)

ML = Maximum Loading (1/4 inch ice with 4 lb/ft2 (40 mph) wind at  $15^{\circ}$ F)



#### **200 FOOT RULING SPAN** SPAN LENGTH (FEET) / SAG (INCHES) WIRE TEMP I.T. °F SIZE #2 ACSR 6/1 **SPARROW** RBS ML 1/0 ACSR 6/1 RAVEN RBS ML 4/0 ACSR 6/1 PENGUIN RBS ML AAC **19 STRAND** COSMOS RBS ML

F.T. = Final Tension (lbs)

ML = Maximum Loading (1/4 inch ice with 4 lb/ft2 (40 mph) wind at 15°F)



|                      |                 |                | SPA            | N LENG         | GTH (FI        | EET) / S       | SAG (IN        | CHES)           |                   |                   |                   |                   |                    |
|----------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| WIRE<br>SIZE         | TEMP<br>°F      | 150            | 170            | 190            | 210            | 230            | 250            | 270             | 290               | 310               | 330               | 350               | I.T.               |
| #2<br>ACSR           | 30<br>40<br>50  | 22<br>23<br>24 | 28<br>29<br>30 | 35<br>36<br>38 | 43<br>45<br>46 | 51<br>53<br>56 | 61<br>63<br>66 | 71<br>74<br>77  | 82<br>85<br>89    | 93<br>97<br>101   | 106<br>110<br>115 | 119<br>124<br>129 | 141<br>135<br>130  |
| 6/1<br>SPARROW       | 60<br>70<br>80  | 25<br>25<br>26 | 32<br>33<br>34 | 39<br>41<br>42 | 48<br>50<br>52 | 58<br>60<br>62 | 68<br>71<br>73 | 80<br>82<br>85  | 92<br>95<br>98    | 105<br>109<br>112 | 119<br>123<br>127 | 134<br>139<br>143 | 125<br>121<br>117  |
| RBS<br>2850          | 90<br>167<br>ML | 27<br>31<br>28 | 35<br>40<br>35 | 43<br>49<br>44 | 53<br>60<br>54 | 64<br>72<br>65 | 75<br>86<br>77 | 88<br>100<br>89 | 101<br>115<br>103 | 116<br>132<br>118 | 131<br>149<br>134 | 148<br>168<br>150 | 113<br>100<br>711  |
| 1/0                  | 30<br>40<br>50  | 14<br>15<br>16 | 18<br>19<br>21 | 22<br>24<br>26 | 27<br>29<br>32 | 32<br>35<br>38 | 38<br>41<br>45 | 44<br>48<br>52  | 51<br>56<br>60    | 59<br>64<br>69    | 66<br>72<br>78    | 75<br>81<br>88    | 357<br>328<br>304  |
| ACSR<br>6/1<br>RAVEN | 60<br>70<br>80  | 17<br>18<br>19 | 22<br>24<br>25 | 28<br>29<br>31 | 34<br>36<br>38 | 40<br>43<br>46 | 48<br>51<br>54 | 56<br>59<br>63  | 64<br>69<br>73    | 74<br>78<br>83    | 83<br>89<br>94    | 94<br>100<br>106  | 284<br>267<br>252  |
| RBS<br>4380          | 90<br>167<br>ML | 20<br>25<br>20 | 26<br>32<br>26 | 33<br>40<br>33 | 40<br>48<br>40 | 48<br>58<br>48 | 57<br>69<br>56 | 66<br>80<br>66  | 76<br>92<br>76    | 87<br>106<br>87   | 99<br>120<br>98   | 111<br>135<br>111 | 240<br>198<br>1094 |
| 4/0                  | 30<br>40<br>50  | 9<br>10<br>11  | 11<br>13<br>14 | 14<br>16<br>18 | 17<br>20<br>22 | 21<br>24<br>26 | 25<br>28<br>31 | 29<br>32<br>36  | 33<br>37<br>42    | 38<br>43<br>48    | 43<br>48<br>54    | 48<br>54<br>61    | 1106<br>981<br>877 |
| 6/1<br>PENGUIN       | 60<br>70<br>80  | 12<br>14<br>15 | 16<br>18<br>19 | 20<br>22<br>24 | 24<br>27<br>29 | 29<br>32<br>35 | 35<br>38<br>41 | 40<br>44<br>48  | 46<br>51<br>56    | 53<br>58<br>63    | 60<br>66<br>72    | 68<br>74<br>81    | 791<br>720<br>661  |
| RBS<br>8350          | 90<br>167<br>ML | 16<br>21<br>14 | 21<br>27<br>18 | 26<br>34<br>22 | 31<br>42<br>27 | 38<br>50<br>33 | 45<br>59<br>39 | 52<br>69<br>45  | 60<br>80<br>52    | 69<br>91<br>60    | 78<br>104<br>68   | 87<br>117<br>76   | 613<br>459<br>2044 |
| 477                  | 30<br>40<br>50  | 18<br>19<br>20 | 23<br>24<br>26 | 28<br>30<br>32 | 35<br>37<br>40 | 42<br>45<br>48 | 49<br>53<br>56 | 57<br>61<br>66  | 66<br>71<br>76    | 75<br>81<br>86    | 85<br>92<br>98    | 96<br>103<br>110  | 856<br>797<br>747  |
| 19 STRAND<br>COSMOS  | 60<br>70<br>80  | 21<br>23<br>24 | 28<br>29<br>30 | 34<br>36<br>38 | 42<br>44<br>47 | 50<br>53<br>56 | 60<br>63<br>66 | 70<br>73<br>77  | 80<br>85<br>89    | 92<br>97<br>101   | 104<br>110<br>115 | 117<br>123<br>129 | 705<br>669<br>637  |
| RBS<br>8360          | 90<br>167<br>ML | 25<br>32<br>19 | 32<br>41<br>25 | 40<br>51<br>31 | 49<br>63<br>38 | 58<br>75<br>45 | 69<br>89<br>53 | 80<br>104<br>62 | 93<br>120<br>72   | 106<br>137<br>82  | 120<br>155<br>93  | 135<br>175<br>104 | 610<br>472<br>1912 |

F.T. = Final Tension (lbs)

ML = Maximum Loading (1/4 inch ice with 4 lb/ft2 (40 mph) wind at  $15^{\circ}$ F)



|                            | SPAN LENGTH (FEET) / SAG (INCHES) |                |                |                |                |                 |                   |                   |                   |                   |                   |                   |                    |
|----------------------------|-----------------------------------|----------------|----------------|----------------|----------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| WIRE<br>SIZE               | TEMP<br>°F                        | 200            | 220            | 240            | 260            | 280             | 300               | 320               | 340               | 360               | 380               | 400               | I.T.               |
| #2<br>ACSR                 | 30<br>40<br>50                    | 42<br>43<br>44 | 51<br>52<br>54 | 61<br>62<br>64 | 71<br>73<br>75 | 82<br>85<br>87  | 95<br>97<br>100   | 108<br>111<br>113 | 122<br>125<br>128 | 136<br>140<br>144 | 152<br>156<br>160 | 168<br>173<br>177 | 130<br>127<br>123  |
| 6/1<br>SPARROW             | 60<br>70<br>80                    | 45<br>46<br>47 | 55<br>56<br>57 | 65<br>67<br>68 | 77<br>78<br>80 | 89<br>91<br>93  | 102<br>105<br>107 | 116<br>119<br>122 | 131<br>134<br>137 | 147<br>151<br>154 | 164<br>168<br>172 | 182<br>186<br>190 | 120<br>118<br>115  |
| RBS<br>2850                | 90<br>167<br>ML                   | 48<br>53<br>49 | 59<br>64<br>59 | 70<br>77<br>71 | 82<br>90<br>83 | 95<br>104<br>96 | 109<br>120<br>111 | 124<br>136<br>126 | 140<br>154<br>142 | 157<br>173<br>159 | 175<br>192<br>177 | 194<br>213<br>197 | 113<br>103<br>712  |
| 1/0                        | 30<br>40<br>50                    | 28<br>29<br>31 | 34<br>35<br>37 | 40<br>42<br>44 | 47<br>50<br>52 | 54<br>57<br>60  | 63<br>66<br>69    | 71<br>75<br>79    | 80<br>85<br>89    | 90<br>95<br>100   | 100<br>106<br>111 | 111<br>117<br>123 | 313<br>297<br>283  |
| ACSR<br>6/1<br>RAVEN       | 60<br>70<br>80                    | 32<br>34<br>35 | 39<br>41<br>42 | 46<br>48<br>50 | 54<br>57<br>59 | 63<br>66<br>69  | 73<br>76<br>79    | 83<br>86<br>90    | 93<br>97<br>101   | 104<br>109<br>113 | 116<br>121<br>126 | 129<br>135<br>140 | 270<br>259<br>249  |
| RBS<br>4380                | 90<br>167<br>ML                   | 36<br>42<br>36 | 44<br>51<br>44 | 52<br>60<br>52 | 61<br>71<br>61 | 71<br>82<br>71  | 82<br>94<br>81    | 93<br>107<br>92   | 105<br>121<br>104 | 118<br>136<br>117 | 131<br>152<br>130 | 145<br>168<br>145 | 240<br>207<br>1094 |
| 4/0                        | 30<br>40<br>50                    | 17<br>19<br>21 | 21<br>23<br>25 | 25<br>28<br>30 | 29<br>32<br>35 | 34<br>38<br>41  | 39<br>43<br>47    | 45<br>49<br>53    | 50<br>55<br>60    | 57<br>62<br>68    | 63<br>69<br>75    | 70<br>77<br>83    | 1000<br>912<br>837 |
| 6/1<br>PENGUIN             | 60<br>70<br>80                    | 23<br>24<br>26 | 27<br>29<br>31 | 32<br>35<br>37 | 38<br>41<br>44 | 44<br>47<br>51  | 51<br>55<br>58    | 58<br>62<br>66    | 65<br>70<br>75    | 73<br>79<br>84    | 81<br>87<br>93    | 90<br>97<br>103   | 774<br>721<br>675  |
| RBS<br>8350                | 90<br>167<br>ML                   | 27<br>35<br>25 | 33<br>35<br>30 | 40<br>51<br>36 | 46<br>59<br>42 | 54<br>69<br>49  | 62<br>79<br>56    | 70<br>90<br>63    | 79<br>102<br>72   | 89<br>114<br>80   | 99<br>127<br>89   | 110<br>141<br>99  | 637<br>497<br>2056 |
| 477                        | 30<br>40<br>50                    | 32<br>33<br>35 | 38<br>40<br>42 | 46<br>48<br>50 | 53<br>56<br>59 | 62<br>65<br>69  | 71<br>75<br>79    | 81<br>85<br>90    | 91<br>96<br>101   | 103<br>108<br>113 | 114<br>120<br>126 | 127<br>133<br>140 | 850<br>807<br>769  |
| AAC<br>19 STRAND<br>COSMOS | 60<br>70<br>80                    | 37<br>38<br>40 | 44<br>46<br>48 | 53<br>55<br>57 | 62<br>64<br>67 | 72<br>75<br>78  | 82<br>86<br>89    | 94<br>98<br>101   | 106<br>110<br>114 | 118<br>123<br>128 | 132<br>138<br>143 | 146<br>152<br>158 | 736<br>706<br>680  |
| RBS<br>8360                | 90<br>167<br>ML                   | 41<br>51<br>34 | 50<br>62<br>41 | 59<br>73<br>48 | 69<br>86<br>57 | 80<br>100<br>66 | 92<br>115<br>76   | 105<br>130<br>86  | 119<br>147<br>97  | 133<br>165<br>109 | 148<br>184<br>121 | 164<br>204<br>135 | 656<br>528<br>1937 |

F.T. = Final Tension (lbs)

ML = Maximum Loading (1/4 inch ice with 4 lb/ft2 (40 mph) wind at  $15^{\circ}$ F)



# Appendix D: SERVICE CONNECTION TYPICAL EQUIPMENT SPECIFICATIONS

# **Table of Contents**

Contact CLP Installation Manager for electrical equipment not listed.

| SPEC E-SP-002 | Medium Voltage Power Cable Specifications                    |
|---------------|--------------------------------------------------------------|
| SPEC E-SP-006 | * Pad-mount Distribution Transformer Specifications          |
| SPEC E-SP-007 | Pole-mount Distribution Transformer Specifications           |
| SPEC E-SP-008 | *** Pad-mount Underground Distribution Switch Specifications |
| SPEC E-SP-009 | ** Automatic Recloser Specifications                         |
| SPEC E-SP-010 | ** Pole-mount Gang-Operated Load-Break Switch Specifications |
| SPEC E-SP-012 | ** Pole-mount Fused Cutout Specifications                    |

\* Note: Spec datasheet available – Request from base Installation Manager

\*\* Note: Specification awaiting approval.



# Appendix E: ABBREVIATIONS

When practicable, the following standard abbreviations and symbols shall be used on all electric distribution line construction and one-line drawings. Whenever these abbreviations or symbols do not clearly define the work to bedone, additional notes of explanation will be necessary for accurate understanding of the work order.

| A, AMPS   | Amperes                             |
|-----------|-------------------------------------|
| AAAC      | All Aluminum Alloy Conductor        |
| ACSR      | Aluminum Conductor Steel Reinforced |
| AL        | Aluminum                            |
| ALLEY     | Alley Arm (sidearm)                 |
| AR        | Cross-arm                           |
| ARR       | Arrester (Surge, Lightning)         |
| ASB       | Anti-Splitting Bolt                 |
| ATO       | Automatic Throw-Over                |
| BAR       | Buck-arm                            |
| BCU       | Bare Copper                         |
| BP        | Box Pad                             |
|           |                                     |
| BR        | Brace                               |
| BRKT      | Bracket                             |
| BRL       | Barrel Configuration                |
| С         | Capacitor                           |
| CA        | Concrete Anchor                     |
| CATV      | Cable TV                            |
| CCS       | Copper Clad Steel                   |
| CLF       | Current Limiting Fuse               |
| CNR       | Corner (or Shoulder) Type Pins      |
| CP        | Concrete Pad                        |
| CSP       | Completely Self-Protected           |
|           | Transformer                         |
| СТ        | Current Transformer                 |
| CU        | Copper                              |
| CW        | Copper weld                         |
| DA        | Double Arming                       |
| DBL       | Double (Pins/ INS &/ or Arms)       |
| DB        | Direct Bury                         |
| DDE       | Double Deadend                      |
| DE        | Deadend                             |
| DHA       | Double Helix Anchor                 |
| DUP       | Duplex                              |
| E         | Electronic Recloser                 |
| ENC       | Encased in Concrete                 |
| EX, EXIST | Existing                            |
| EXT       | Extension                           |
| F         | Fuse                                |
| FCI       | Faulted Circuit Indicator           |

| FF         | Fused                             |
|------------|-----------------------------------|
| FG         | Fiberglass                        |
| FIMS       | Facilities Information Management |
| FO         | Fiber Ontic                       |
| FS         | Fused Switch                      |
| G          | Gas Line                          |
| GO         | Gang Operated                     |
| GRD        | Ground                            |
|            | Heavy High Strength               |
|            | High Pressure Sodium              |
|            |                                   |
|            | Insulator Insulated Insulate      |
|            |                                   |
|            | Interruptor Switch (Fault)        |
|            |                                   |
|            | Thousands Circular Mile           |
| KU         |                                   |
|            | Kilovolts                         |
| KVA        | Kilowette                         |
| <u>NVV</u> |                                   |
|            | Line Angle                        |
|            | Pounds                            |
| LBU        | Load Break Unit                   |
|            | Loop Feed                         |
| M          | Meter, Meter Location             |
| МН         | Mounting Height                   |
| МО         | Motor Operated                    |
| MV         | Mercury Vapor, Medium Voltage     |
| MVI        | Molded Vacuum Interrupter         |
| #          | Number                            |
| N, NEUT    | Neutral                           |
| NC         | Normally Closed                   |
| NO         | Normally Open                     |
| NR         | Non Reclose                       |
| NT         | Network Transformer               |
| OD         | Open Delta Connection             |
| ОН         | Överhead                          |
| P, PRI     | Primary                           |
| PB         | Push Brace                        |
| PD         | Pad-mount                         |
| PE         | Photoelectric                     |
| L          |                                   |



| PED     | Pedestal                               |
|---------|----------------------------------------|
| PH or Ø | Phase                                  |
| PT      | Potential Transformer                  |
| QUAD    | Quadraplex                             |
|         |                                        |
| R       | Recloser                               |
| RA      | Rock Anchor                            |
| RBS     | Rated Breaking Strength                |
| REG     | Regulator                              |
| RF      | Radial Feed                            |
| RM      | Remove, Removable                      |
| ROW     | Right-of-Way                           |
| RP      | Replace                                |
| RS      | Ruling Span (for Sag/Tension)          |
| SCADA   | Supervisory Control & Data Acquisition |
|         | System                                 |
| S, SEC  | Secondary                              |
| SECT    | Sectionalizer                          |
| SER     | Service                                |
| SG, SGH | Span Guy, Span Guy Heavy               |
| SGL     | Single (Pins, Arms, INS)               |
| SHA     | Single Helix Anchor                    |
| SL      | Street Light                           |
| SOL     | Solid                                  |
| SS      | Sanitary Sewer, Storm Sewer            |
| ST      | Static (Shield Wire/ Neutral Level)    |

| STR     | Strand, Stranded            |
|---------|-----------------------------|
| SW      | Switch                      |
| SWG     | Sidewalk Guy                |
| T-OP    | Tee-Op 600 Amp Separable    |
|         | Connectors                  |
| TEL     | Telephone                   |
| TEMP    | Temporary                   |
| TERM    | Terminate, Cable Terminator |
| TPA     | Tipping Plate Anchor        |
| TRANS   | Transmission                |
| TRI     | Triplex                     |
| TS      | Traffic Signal              |
| TSFR    | Transformer                 |
| TYP     | Typical                     |
| U, UBLT | Underbuilt                  |
|         |                             |
| UG      | Underground                 |
| V       | Volts                       |
| VERT    | Vertical Construction       |
| VLT     | Vault                       |
| VT      | Voltage Transformer         |
| W       | Watts, Waterline            |
| WO      | Without                     |
| WP      | Wood Pole                   |
| Х       | Crossing, Cross             |
| XA      | Expanding Anchor            |

